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Abstract

This paper presents an Intellij IDEA plugin for Lincheck— a popu-
lar framework for testing concurrent data structures on JVM. The
Lincheck framework automatically generates concurrent scenarios
and examines them with a model checker, providing a detailed
execution trace that reproduces the detected error. This trace in-
cludes all shared memory access and synchronization events. The
Intellij IDEA plugin offers record-and-replay debugging to study the
execution trace, providing native debugging experience in the IDE.
The Lincheck plugin pauses the failed execution at the beginning
and provides additional panels that visualize the failed scenario, the
execution trace, and the current state of the data structure. One can
step through the trace and reproduce the error, moving forward
and backward and observing how the data structure changes. These
novel capabilities significantly improve the debugging process, mak-
ing identifying and fixing complex concurrency bugs easier.

CCS Concepts

« Software and its engineering — Model checking; Software
testing and debugging.
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1 Introduction

Concurrent programming is notoriously challenging. Bugs in con-
current programs can be elusive and often difficult to reproduce,
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particularly due to the non-deterministic nature of concurrent exe-
cution. As such, reliable tools for testing, verifying, and debugging
concurrent programs are critically needed in industry, academia,
and software engineering education.

One technique that has proven effective in restraining the non-
deterministic nature of concurrent programs is software model
checking [5, 8, 15, 22]. Model checking systematically and determin-
istically explores possible traces of a concurrent program in a con-
trolled environment. In this way, the inherently non-deterministic
execution of concurrent programs is turned into a deterministic
process, enabling robust and reproducible testing.

For JVM-based languages, such as Java and Kotlin, the Lincheck
framework [16] provides a declarative and reliable way to test
concurrent data structures. Lincheck takes a list of data structure
operations, automatically generates a set of concurrent scenarios,
and examines them in the model checking mode, exploring different
thread interleavings and executing each deterministically. In case
the model checker discovers a bug, the framework provides a de-
tailed execution trace that instructs how to reproduce the error. This
trace represents the order of shared memory events in the execution,
such as reads and writes to object fields and thread switches.

Although the execution trace is extremely useful for identifying
the root cause of a bug, presenting it as plain text means that de-
velopers have to simulate the sequence of events from the trace in
their minds. One may dream of a superior approach involving inte-
gration into standard development workflow inside IDE, leveraging
the debugger for interactive stepping through the trace.

Our Contribution. To improve the debugging user experience, we
developed an IDE plugin for Intellij IDEA that provides a smooth
integration of the Lincheck framework with the IDE debugger.

The plugin complements the IDE with several new panels that
visualize the failed scenario, the execution trace, and the current
state of the tested data structure. By providing integration with
the Intellij debugger in the form of record-and-replay debugging [2,
14, 23, 24], one can replay the execution trace right in the IDE,
jumping both forward and backward and utilizing the full power
of the Intellij IDEA debugger. Specifically, the execution trace view
offers convenient navigation to the source code and the ability to
pause at any trace event, making it easy to navigate the execution
trace and match trace events with the corresponding source code.

Overall, the Lincheck integration with the Intellij IDEA enables
a cohesive testing and debugging workflow.
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2 The Lincheck Framework

We begin by showcasing Lincheck on an example and explaining
the framework’s implementation details.

1 class SPSCQueue<E> {
2 var head = Node(null)
var tail = head

fun enqueue(element: E) {
6 val newTail = Node(element)
val curTail = tail
8 tail = newTail
9 curTail.next = newTail

12 fun dequeue(): E? {

13 if (tail == head) return null

14 head = head.next!! // <- can throw NullPpointerException
15 return (head.element as E)

16 3}

1

18 private class Node(val element: Any?) {
19 var next: Node? = null

20 }

> class SPSCQueueTest {
23 val g = SPSCQueue<Int>()

25 (nonParallelGroup = "producer")
26 fun enqueue(element: Int) = qg.enqueue(element)

8 (nonParallelGroup = "consumer")
29 fun dequeue() = g.dequeue()

fun test() = ModelCheckingOptions().check(this::class)

Listing 1: Buggy single producer single consumer concurrent
queue implementation with a concurrent Lincheck test.

Lincheck by example. Listing 1 shows a simple single-producer
single-consumer queue with a Lincheck test to verify its correctness.
The data structure recalls the classic Michael-Scott queue [20],
forming a linked list (lines 18-20) with head and tail referencing
the first and the last nodes (lines 2—3). The empty queue is expressed
with a linked list of a single node, both head and tail pointing
to it. In this way, the first queue element is stored not in the head
node but in the head. next one.

The enqueue(. .) operation creates a new node with the speci-
fied element (line 6), reads the current tail (line 7), updates it to the
created node (line 8), and then updates the next pointer of the pre-
vious tail (line 9), thus, linking the new node. To extract the first
element, dequeue() checks whether the queue is empty by com-
paring head and tail references (line 13), followed by extracting
the first node (line 14) and reading the element (line 15).

The following Lincheck test verifies whether this queue imple-
mentation is correct (lines 22-33). In the test constructor (lines 23),
we specify how to create a new queue instance, followed by list-
ing the tested operations (lines 25-25) — the corresponding func-
tions should be marked with a special @peration annotation
provided by Lincheck. To instruct the framework to satisfy the
single-producer single-consumer semantics, we put enqueue(. .)
and dequeue() into different non-parallel operation groups (see
the nonParallelGroup annotation parameter). Finally, we run the
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Invalid execution results =

Thread 2

dequeue(): NullPointerException #1 | enqueue(-1): void

| |
| Thread 1 | |
| |
| |
| |

The following interleaving leads to the error

Thread 1

Thread 2

| enqueue(-1)

| q.enqueue(-1)

| tail.READ: Node#1

| tail.WRITE(Node#2)

| switch
dequeue(): NullPointerException #1 |
| Node#1. setNext (Node#2)
| result: void

Exception stack traces:
#1: java.lang.NullPointerException: null
at SPSCQueue.dequeue (SPSCQueue.kt:14)
at SPSCQueueTest.dequeue(SPSCQueue.kt:29)

Listing 2: Lincheck test output for the code in Listing 1.

test using the JUnit testing framework and instructing Lincheck
to use the model checking mode (lines 31-32).

The test output is presented in Listing 2. Lincheck reports a
bug, providing the minimized concurrent scenario on which the
bug manifests and the detailed execution trace that shows how to
reproduce the error. The bug manifests when enqueue(..) and
dequeue() are executed concurrently, leading to an unexpected
NullPointerException in dequeue().

The detailed execution trace makes it easy to analyze the error.

The execution starts with enqueue (1), which creates a new node
and updates tail but gets preempted before linking this node to
the linked list. At this point, the execution switches to dequeue(),
which notices that the tail reference has been updated and tries
to extract the first node, which results in Nul1PointerException
when reading head. next and expecting it to be non-null. A possible
fix would be to either update the next reference before tail in
enqueue(. .), or check head.next for null to decide whether the
queue is empty in dequeue().
How Lincheck works. Given the listed operations (annotated with
@Operation), Lincheck automatically (1) generates a set of random
concurrent scenarios, (2) examines them with a bounded model
checker, and (3) verifies that the results of each invocation sat-
isfy the required correctness property (linearizability is the default
one). The model checker explores different thread interleavings,
attempting to detect various bugs, such as unexpected exceptions,
deadlocks, livelocks, and linearizability violations [7, 13]. When
Lincheck discovers a bug, it replays the failed interleaving and
collects the execution trace to provide it in the test output.

Bytecode Instrumentation. For the model checker to control the
execution and study different thread interleaving, we need a way to
pause threads before shared memory accesses (such as reads, writes,
atomic, and synchronization instructions) and select the one that is
currently active. For that, Lincheck instruments the JVM bytecode
of the testing code, injecting calls to the model checker methods
right before shared memory events. This technique helps to not
only track these events but also to collect all the debug information
required to provide an execution trace. Please refer to our paper
about Lincheck for the technical details [16].
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3 Lincheck Scenario 1

Invalid executions results

ol

I[dequeue(): NullPointerException #1 O)l—l

enqueue(-1) e
result: void 23

[X SPSCQueue.kt

curTail.next = newTail

}

fun dequeve(): E? {
if (tail == head) return null tail: org.jetb

return (head.element as E)

}

new *
class Node(val element: Any?) {
@Volatile
var next: Node? = null next: ora.ietbrains.l

Debug &7 SPSCQueueTest.test

Threads & Variables ~ Console G G (& [OJ

"Lincheck-SPSC...main": RUNNING /' +
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testThreadRunnable$lambda$10:174, FixedActi
run:-1, 1261257916 (org.jetbrains.kotlinx.linchec
run:829, Thread (java.lang)
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~ 2 [SPSCQueue#1] this = {SPSCQueue@5041} org.jetbrains.lincheck.test.project.

| | head = head.next!! // <-- can throw NPE

Lincheck State Diagram 3 L
SPSCQueueTest#1 693
q

headty, il

2
Node#1

(©) element = null
(1) next = null

Node#2

) element = -1
() next = null

{14 AL t|og

~ (D [Node#1] head = {SPSCQueue$Node@5043} org.jetbrains.lincheck.test.prof
® element = null
(® next = null
® next {org.jetbrains.lincheck.test.project. SPSCQueue$Node} ... get()
® head {org.jetbrains.lincheck.test.project.SPSCQueue$Node} ... get()
v (D) [Node#2] tail = {SPSCQueue$Node@5064} org.jetbrains.lincheck.test.projel

(® element = {Integer@5527} -1

ext = null
® next {org.jetbrains.lincheck.test.project.SPSCQueue$Node} ... get()

® tail {orgjetbrains.lincheck.test.project. SPSCQueue$Node} .. get()

Thread 2 2
~ enqueue(-1)
~ qg.enqueue(-1)
tail. READ: Node#1
tail WRITE(Node#2)
switch Next event
Thread 1
~ dequeue(): NullPointerException #1
~ g.dequeue(): threw NullPointerException
tail.READ: Node#2
head.READ: Node#1
head.READ: Node#1

Switch frames from anywhere in the IDE with

Node#1.getNext(): null
result: NullPointerException #1

Figure 1: Screenshot of the Intellij IDEA with the Lincheck plugin for debugging the failed test from Listing 1. The plugin
visualizes (1) the failed scenario, (2) the execution trace, and (3) the current state of the data structure.

3 Intelli] IDEA Plugin for Lincheck

To improve the error debugging, we created a plugin [25] for Intelli]
IDEA, which provides native debugging experience for Lincheck.
With the plugin, users can re-run a failed Lincheck test in the debug
mode. The plugin pauses the failed execution at the beginning, pro-
viding additional Lincheck panels that visualize the failed scenario,
the execution trace, and the current state of the data structure.
Figure 1 demonstrates the Intelli] IDEA screen with the Lincheck
plugin enabled and the execution paused before reading null from
head. next; the debugging interleaving is the one from Listing 2.

Scenario Visualization. The plugin displays the failed scenario
with the results in an intuitive way on the additional “Lincheck
Scenario” panel (frame 1 on the screenshot). Concurrent threads
are highlighted with different colors, and arrows indicate the order
of operations. On Figure 1, the execution starts with enqueue(-1)
in Thread 2, then switches in the middle of the operation, followed
by executing dequeue (), switching back to Thread 1, and finishing
the preempted enqueue(-1).

Execution Trace. In addition to the scenario visualization, the
plugin shows all trace events of the failed execution; see frame 2 on
Figure 1. These trace events are also provided in the Lincheck test
output (see Listing 2). Apart from the overview of the operations and
the thread switches, this panel allows jumping between different
trace points and stopping there with the debugger to examine the
state of the data structure.

Data Structure Visualization. The final piece is the “Lincheck

State Diagram” panel (frame 3 on the screenshot), which visualizes
the current state of the tested data structure. This feature is crucial

when debugging complex data structures, especially those with
circular references, arrays, linked lists, or trees under the hood.
Notably, the plugin renders some concurrency-related constructs
in a more intuitive way. For instance, the AtomicReference and
similar classes are visualized as regular fields instead of separate
objects, the fields related to coroutine internals or low-level atomic
primitives (e.g., AtomicReferenceFieldUpdaters) are hidden, etc.
This way, the developer’s focus does not blur with unnecessary
data, and they can track the logical state of the data structure.

Record-and-Replay Debugging. The most significant feature is
that the plugin enables stopping at any interleaving point in the
debug mode, making it possible to go both forward and backward
in the execution.

To go forward in the execution, the debugger resumes the pro-
gram until it reaches the selected event in the trace. For going to an
event in the past, the plugin utilizes Lincheck’s ability to reproduce
the failed execution, re-running the scenario from the beginning
until the execution reaches the selected event. Given that Lincheck
is capable of minimizing the failed scenario, the resulting one is
typically of a small size, so re-running it from the beginning does
not lead to a noticeable delay.

Note that re-running the interleaving when stepping backward
might change the object identifiers. To compensate for this effect,
the plugin enumerates all objects with the deterministic enumer-
ation that remains stable for different runs (see the node titles in
the “Lincheck State Diagram” panel, the labels in blue color in the
debugger panel, and the object names in the trace panel).

Deterministic replay of a failed execution is made possible through
the bytecode instrumentation performed by Lincheck. The tool
records all shared memory and synchronization events and later



ISSTA °24, September 16-20, 2024, Vienna, Austria

replays them in the same order. While a program may also contain
other sources of non-determinism, such as filesystem or network
1/0, these are beyond the scope of Lincheck, as its primary use case
is testing concurrent data structures.

In contrast to alternative record-and-replay debuggers [9, 11, 17,
18], our solution does not require code modification, and does not
need additional memory to memorize the execution, but relies on
the relatively small size of the execution. At the same time, fairly
running the execution makes the plugin’s implementation more
straightforward and allows the debugger features to be utilized
almost out of the box.

Integration with the Intelli] Debugger. For the model checker
to control the execution, Lincheck injects calls to the model checker
methods right before shared memory events. To integrate with
the debugger, we added additional beforeEvent(eventId) calls,
enumerating all the execution trace events with ids. When the user
selects a trace event in the plugin view, the plugin knows its event
id and instructs the debugger to stop when beforeEvent with the
specified eventId is called. The latter is achieved by installing syn-
thetic breakpoints. This way, we created a communication protocol
between the Intellij debugger and Lincheck.

With such a communication protocol, Lincheck can provide all
the necessary information to the debugger, passing it as parameters
to the injected method calls. That is how we provide the bug details
and the current state of the data structure for further visualization.
Notably, the Intellij debugger can communicate back by replacing
the method return values via the “Force Return” functionality [3],
which Lincheck uses to detect the plugin.

This strategy makes the integration straightforward but still
brings challenges when using the standard debugger features, such
as breakpoints and stepping. First, the user’s breakpoints should
not be triggered during the bug discovery phase. Second, Lincheck
injects additional method calls into the bytecode, which must be
skipped during stepping. Finally, Lincheck manages thread sched-
uling during the scenario execution, so any step in the debugger
may lead to a hang, as Lincheck may pause the current thread.

We addressed these issues by integrating the debugger process
with the Lincheck’s model checker. Specifically, we turn off all the
user breakpoints until the bug is reproduced, add Lincheck internal
classes to the stepping filters in the Intellij debugger configuration,
and notify the debugger about the logical thread switches performed
by Lincheck, so the debugger can interrupt the current stepping
operation and resume the execution in another thread.

With the help of these techniques, developers get the full power
of the debugger, including evaluation and memory state analysis,
as well as jumping in both forward and backward directions.

4 Tool Availability

The Lincheck framework is open-source and available on GitHub
at github.com/JetBrains/lincheck. The Intellij plugin for Lincheck
can be downloaded from the marketplace [25]. (The plugin requires
IntelliJ] IDEA Ultimate, which is free for academic use.)

For a video that showcases the plugin, please refer to jb.gg/lincheck-
demo-ecoop24. The accompanying artifact, containing the code in
Listing 1, several other examples, and detailed instructions on how
to install the plugin, is available on GitHub at JetBrains/lincheck-
/tree/ecoop24.
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5 Related Work

Model Checking is a well-known software verification technique,
implemented in tools such as CBMC [8] for the C language and
PathFinder [12] for Java. The CHESS [7, 22] framework for C# was
one of the pioneering tools to apply stateless model checking for
verifying real-world concurrent programs. More recently, tools like
GenMC [15] and Nidhugg [4, 5] have made major advancements in
addressing the state space explosion problem encountered during
the model checking of concurrent programs, using a technique
known as dynamic partial order reduction. Additionally, these tools
support verification under weak memory models [6], detecting more
sophisticated bugs arising from insufficient synchronization.

Currently, Lincheck supports neither partial order reduction nor
the JVM weak memory model, but we are actively working on
integrating these functionalities into our framework.

Record-and-Replay Debugging, also referred to as time-traveling
debugging, aims to capture and record all sources of non-determinism
in a program’s execution, with the ability to later deterministically
replay the given execution. There could be different sources of
non-determinism in a program, such as concurrency, I/O, or system
calls. Different record-and-replay tools utilize a variety of tech-
niques to capture the sources of non-determinism: code instrumen-
tation [2, 14, 24], system calls tracing and interception [23], shared
library interposition [19]. execution in a controlled environment
(e.g., running single thread at a time) [23], as well as special support
on the virtual machine [10] or hardware [21] levels.

Lincheck’s primary use case is testing and debugging concur-
rent data structures. Thus, we focus on concurrency and thread
scheduling record-and-replay and utilize the code instrumentation
approach. In the future, we aim to gradually improve the record-
and-replay capabilities of our platform to support more use cases.

Debugging Visualization. Plugins that enhance the host IDE with
various debugging visualization features have been developed in
the past for Intellij IDEA [17, 18], VSCode [9], and Eclipse [11].

The visual debugger of the Lincheck plugin leverages the Intellij
platform diagramming API (based on the yFiels library [1]) to
achieve IDE-native look and familiar user experience. Moreover,
the visualization functionality is integrated with other components
of the plugin, such as record-and-replay debugging, enabling users
to visually inspect and navigate through the execution trace.

6 Conclusion

This work presents the Intellij IDEA plugin for Lincheck [25], en-
abling outstanding debugging experience when testing concurrent
data structures on JVM. The plugin provides intuitive scenario vi-
sualization and navigation through the execution trace, enabling
it to stop at any trace point in the debug mode. Besides, it offers
time-traveling debugging and visualizes the current data structure
state as an object graph.

We believe the Lincheck plugin not only helps software engi-
neers, researchers, and students design and develop concurrent
algorithms but also serves as a strong proof-of-concept for IDE-
native data structure visualization for Intelli] IDEs and a reliable
record-and-replay debugger for JVM. Both these applications cover
broader cases and can be utilized for regular code.
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