
Scalable FIFO Channels for Programming

via Communicating Sequential Processes

Nikita Koval
IST Austria & JetBrains

Dan Alistarh
IST Austria

Roman Elizarov
JetBrains

Abstract

Traditional concurrent programming involves manipulating shared mutable state. Alterna-
tives to this programming style are communicating sequential processes (CSP) and actor models,
which share data via explicit communication. These models have been known for almost half a
century, and have recently had started to gain significant traction among modern programming
languages. The common abstraction for communication between several processes is the chan-
nel. Although channels are similar to producer-consumer data structures, they have different
semantics and support additional operations, such as the select expression. Despite their
growing popularity, most known implementations of channels use lock-based data structures
and can be rather inefficient.

In this paper, we present the first efficient lock-free algorithm for implementing a commu-
nication channel for CSP programming. We provide implementations and experimental results
in the Kotlin and Go programming languages. Our new algorithm outperforms existing imple-
mentations on many workloads, while providing non-blocking progress guarantee. Our design
can serve as an example of how to construct general communication data structures for CSP
and actor models.

1 Introduction

Programming via communicating sequential processes (CSP) was introduced by Hoare [18] almost
half a century ago, and has had significant research and practical impact [10]. In particular, many
modern programming languages, such as Go [8], Kotlin [4], Scala [25], and Rust [9] provide support
for this programming paradigm, as an alternative, or complement, to synchronization via shared
memory.

Very roughly, programs in CSP can be seen as a parallel composition of sequential processes,
communicating with each other via synchronous message-passing.1 The CSP paradigm is built
around channels, which provide the basic communication and synchronization mechanisms between
the computational processes.

To efficiently support CSP programming on modern multi-threaded multiprocessors, it is critical
to be able to implement fast, scalable channels, supporting the CSP semantics. Naively, concurrent
channels can be seen as a classic instance of first-in-first-out (FIFO) queues, which have been exten-
sively studied in shared-memory programming [17]. Yet, CSP channels typically require additional,
non-trivial semantics, which are not easy to pigeonhole in the classic producer-consumer data struc-
ture definitions, and their usage scenarios can vary broadly. One such example is commonly-used

1CSP is broadly similar to the actor model [12], with key distinctions in terms of the basic assumptions regarding
process identities and synchronization.

1

the select expression, by which a process can register operations in a set of channels, returning
on the first operation that succeeds.

Different programming language implementations fill this implementation gap by “brewing”
their own FIFO channel implementations, either independently, or adapting ideas present in the
concurrency literature. Most implementations, including Go [8] and Rust [9], rely on lock-based
designs. In particular, they rely on careful combinations of fine-grained and coarse-grained syn-
chronization to implement the complex channel semantics. One notable exception is the Kotlin
coroutines library [4], which implements a complex producer-consumer data structure, based on a
doubly-linked list design [31]. Unfortunately, this implementation is known to allow for live-lock
in certain corner cases [5]. Another one exception is SynchronousQueue in Java [27], which is
based on Michael-Scott queue [23]; however, it does not support the select expression.

Contribution. In this work, we revisit the question of implementing an efficient channel with CSP
semantics. We provide the first linearizable, lock-free implementation of a rendezvous channel sup-
porting send, receive, and select operations, that is fast in both contended and uncontended
scenarios, and can be extended to implement CSP semantics as specified by various programming
languages.

Our design builds on ideas from previous work on lock-free FIFO queues, e.g. [23, 11, 27]. Our
base data structure is similar to the Michael-Scott queue, but where nodes are segments, which can
accommodate multiple waiting operations of either send or receive type.

We non-trivially extend this blueprint to support extended semantics in a wide range of con-
tended and uncontended scenarios. Specifically, we add efficient support for select operations,
which can wait on operation in a set of channels, via a customized implementation of descrip-
tors [14]. A novel feature of our mechanism is that it permits physical removal of elements from
the middle of a queue-like structure in O(1) amortized operations, which is required for an im-
plementation of the select expression. The proposed algorithm is quite general, in that it can
be adapted to other synchronization primitives for CSP programming, such as buffered channels,
mutexes, and semaphores.

We validate our algorithm with efficient implementations of our channel in Go and Kotlin. Our
algorithm can provide comparable performance relative to the lock-based Go implementation in a
range of scenarios, and outperforms it by up to 2× in terms of average time per operation. Our
Kotlin implementation significantly outperforms the existing library implementation [4], especially
the select expression. It speeds up the send and receive operations by up to 2× for the most
part, and by a couple of magnitude in certain scenarios; the select expression is faster by up to
10×.

2 Channel Semantics

The rendezvous channel is the main abstraction for message passing protocols used in both CSP
and actor programming models. Intuitively, in this abstraction, there are two types of processes,
producers and consumers, which perform a rendezvous handshake as a part of their protocol. This
section describes the channel semantics and its API, which is shown in Listing 0. In the following,
we assume that threads are either producers, which perform send requests, or consumers, which
perform receive requests.

Send and receive semantics. In order for a producer to “send” an element, it has to perform a
rendezvous handshake with a consumer, to which it passes this element. The consumer semantics

2

1 class Channel {
2 fun send(element: Any)
3 fun receive(): Any
4 }
5

6 fun select(alternatives: SelectAlt[])

7 class SelectAlt(
8 val channel: Channel,
9 val element: Any?, // null for receive

10 val action: fun(Any?)
11)

Listing 0: Rendezvous channel API

are symmetric. At the same time, we assume first-in-first-out (FIFO) guarantees, meaning that all
requests in a channel should be processed in the order of arrival.

At the operational level, the rendezvous channel is essentially a queue of waiting processes,
where each request atomically checks if the queue has processes of the opposite type, and either
removes the first one and resumes it, or adds itself to the queue and suspends. Practical systems
offer an efficient way to suspend a process waiting for a request, and resume it after that. This
mechanism is described in Section 4.

The select expression. Channels in the CSP programming model usually support selection
among several alternates. This expression is usually called select and it makes possible to await
multiple send or receive invocations on different channels, and select the first one which becomes
available. At the same time, the chosen process should be removed from the other waiting queues.
The classic select expression checks the alternatives in the enumeration order, while the unbiased
version uses a random order [8, 4]. For simplicity, we assume an arbitrary order on alternatives,
but the proposed algorithm does not rely on this restriction and can be easily modified to support
any ordering strategy.

Programming languages take different approaches for defining the select expression. For
example, Go supports it as a built-in feature [8], while Kotlin implements it in the Kotlin Coroutines
library providing a domain specific language (DSL) for the select declaration [4]. For this paper
we use a DSL-based API, which can be used for built-in expression implementation as well.

To describe alternatives, we use the SelectAlt class, which specifies a channel, an element
to be sent (null is used for receiving), and an action to be executed with the received element
(null is passed when sending) in case this alternative is selected. The selection algorithm can be
implemented as an external select function taking an array of alternatives. Listing 1 shows an
example usage of this API.

1 ch1 := Channel(), ch2 := Channel()
2 select(
3 SelectAlt(ch1, 42, { _ -> println("Sent 42") }),
4 SelectAlt(ch2, null, { res -> println("Received $res") })
5)

Listing 1: Example of the select expression usage. This code either sends ”42” to the first
channel or receives an element from the second one.

3 Related Work

3.1 Coroutines and Actors

Two basic parallel programming models use message passing for synchronization: actors [12] and
coroutines [20]. The second one is also known as green threads and fibers. Roughly, an actor can

3

be represented as a coroutine associated with a channel, to which other actors can send messages,
and from which this actor can receive them. In contrast to actors, coroutines use channels directly
and can perform the select expression on them.

Several modern programming languages and libraries use one of these models. For example,
Go [8], Kotlin [4], Clojure [7], Rust [9], and project Loom for Java [6] use coroutines, while Erlang [3]
and Akka [2] use the actor model; all of them have their own channel implementations. Almost all
solutions we are aware of use locks in order to support a waiting queue, and perform the select
expression using fine-grained synchronization on these locks. These approaches are fundamentally
blocking.

To our knowledge, the only non-blocking channel implementation is a part of the Kotlin corou-
tines library [4], which is lock-free. Here, the waiting queue is implemented using a modified instance
of the doubly-linked list designed by Sundell and Tsigas [31], and Harris descriptors [14] to ensure
the atomicity. The resulting implementation is extremely complex, and shows significant overhead,
as we show in the experimental section. Moreover, it is known that Kotlin’s lock-free algorithm
for a correctness bug, and can get into a livelock [5]. This makes our solution for the select
expression the first lock-free implementation to support such semantics.

3.2 Producer-Consumer Data Structures

Fair synchronous queues. Among classic data structures, synchronous queues are probably
closest to channels in terms of semantics. They support send and receive operations, which
wait for a rendezvous. The main difference is that they do not support the select expression.
Hanson suggested an algorithm based on three semaphores [13], which was improved in Java 5
using a global lock and wait-notify mechanism in order to make a rendezvous.

Java 6 implements a lock-free algorithm suggested by Scherer, Lea, and Scott [27]. Their
solution is based on Michael-Scott lock-free queue [23]; we use a similar technique for maintaining
the waiting queue.

Reference [19] presents an improved general scheme for implementing non-blocking dual con-
tainers. Their approach leverages the LCRQ non-blocking queue design [24] in a clever way, to im-
plement a rendezvous mechanism. While this approach is quite interesting and efficient in practice,
it requires access to double-width atomic primitives, which are only supported by Intel CPUs. This
makes the code non-portable: for instance, it would prevent implementation in both Java/Kotlin
and Go. Therefore, we cannot apply it in our setting.

Unfair synchronous queues. Scherer, Lea, and Scott also propose unfair but scalable syn-
chronous queue, which is based on a stack instead of a queue [27]. However, this approach still
induces a sequential bottleneck on the stack. To work around a single point of synchronization,
Afek, Korland, Natanzon, and Shavit introduced elimination-diffraction trees [11]. In this solution,
each request goes through a binary tree, in which internal nodes are balancer objects [30], and leaves
are synchronous queues.

Another approach to reducing contention is flat combining [15], which was applied to unfair
synchronous queue problem by Hendler et al.[16].

Elimination. One more way to reduce contention is using elimination, which was firstly applied
for stacks [29] by Shavit and Touitou. They observed that concurrent push and pop operations can
be eliminated preserving atomicity by having the push operation pass directly to pop, without
modifying the stack. Scherer, Lea, and Scott use elimination in their exchanger algorithm [26],

4

1 class Coroutine {
2 ...
3 var result: Any?
4 }
5

6 fun curCor(): Coroutine
7

8 fun park()
9 fun unpark(c: Coroutine)

10

11 fun resume(c: Coroutine, res: Any?) {
12 c.result = res
13 unpark(c)
14 }
15

16 fun suspendAndGetResult(): Any? {
17 c := curCor()
18 park(c)
19 return c.result
20 }

Listing 1: Coroutines management primitives

where there is only one type of request and so a rendezvous happens between any two threads that
show up. In case of channels, not all pairings are allowed, so their approach is not applicable for
our problem.

4 Preliminaries

Coroutines management. To implement send and receive operations, we need to have an
ability to store the current coroutine somewhere and suspend it, after what an opposite operation
can resume it. It is worth noting that some libraries use another approach and store continuation,
which has the required information for resuming. Nevertheless, both approaches are equivalent for
our purpose and should provide the described above functionality.

The algorithm presented in the paper uses definitions from Listing 4. The Coroutine class
represents a coroutine and new fields can be inserted into it for synchronization. To get the current
coroutine, we use the curCor function. The park and unpark methods are used for suspending
and resuming the coroutine respectively. As well as in the native thread park mechanism, we
assume that park returns without suspension if unpark has been called before. However, in case
of suspension, park does not block the current thread, but schedules to another waiting coroutine.

Not all environments provide such contracts. For example, in Go language gopark (park)
invocation should always happen before goready (unpark) invocation. This solution is sufficient
for the lock-based algorithm, but can be also easily extended to support the required contract by
providing an appropriate implementation of park on top of gopark.

In order to send an element to a suspended coroutine, we suggest adding a special field into
Coroutine class, which stores the result. This way, in case of resuming a coroutine, we use
resume method which stores the result in this field and unparks the coroutine. From the other
side, to suspend and return this result we use suspendAndGetResult, which parks the current
coroutine and returns the previously stored result right after it was unparked.

Lock-freedom. When discussing progress guarantees, we assume that the provided park, unpark,
and curCor functions are lock-free. In case of park, this means that the current thread parks the
current coroutine and schedules another one in a lock-free way.

Taking into account that the channel is a blocking data structure by design (sender waits for a
receiver and vice versa), it is possible to guarantee lock-freedom for a part of the algorithm only.
Similar to the dual data structures formalism [28], we split every operation into two parts. At first,
it atomically checks for an opposite coroutine in the waiting queue and either removes it or adds
the current one. Secondly, in case of adding to the waiting queue (or adding to all waiting queues

5

in select statement), it parks the current coroutine and waits for an unpark invocation. Thus,
we guarantee lock-freedom for the first part only, which essentially does all the synchronization.

Memory model and atomic primitives. For simplicity of exposition, we assume a sequentially-
consistent memory model, although our implementations work under the practical, weaker models.
The presented algorithm requires only compare-and-set (CAS) primitive in addition to the standard
read and write. It is denoted as CAS(&p, old, new), and atomically checks that the value
located by address p equals to old and changes it to new. It returns false if the check fails and
true otherwise.

Memory reclamation. We assume that run-time environment supports garbage collection, which
is true for Kotlin and Go. However, this assumption is mostly for simplicity of exposition. Recla-
mation techniques like hazard pointers [22] can be used in other environments.

5 Algorithm Description

Overview. Similarly to the rendezvous channel specification, our algorithm maintains a waiting
queue, which is loosely based on the Michael-Scott [23] queue design. However, our waiting queue
stores several waiters in each node, and supports a more complex channel contracts, including the
select expression. This section describes the proposed algorithm iteratively. At first, the basic
algorithm for send and receive operations is discussed; after that, we extend the algorithm in
order to support the select expression.

5.1 Channel Structure Overview

Essentially, our algorithm implements a fair synchronous queue, which stores several waiting pro-
cesses in each node, and supports the select expression. The data structure corresponding to the
proposed algorithm is shown in Listing 1.

The overall structure of the channel is represented as a Michael-Scott lock-free queue [23], using
head and tail pointers to Node instances. However, instead of dynamically creating a new Node for
each operation to be waited on, our Node has a fixed-size waiters array of NODE SIZE structures
of Waiter type. The Waiter structure represents either a waiting receiver (if its el field is a
special marker element RECEIVE EL) or a waiting sender (when el field is the element that is
being sent which is neither the marker nor null), together with the reference to the corresponding
coroutine in the cor field. Initially, all items in the waiters array are filled with null values
(both el and cor fields). Every instance of Node has a unique integer id that is equal to zero for
the first node. When a new node is added to the next pointer, the invariant is maintained that
node.next.id = node.id + 1.

In contrast to the synchronous queue algorithm by Scherer et al. [27], our channel has global
enqIdx and deqIdx which indicate the current position to enqueue a new waiter and to dequeue
the oldest one correspondingly. These positions are monotonically increasing 64-bit integer counters,
their value modulo SEGMENT SIZE indicate an offset in waiters array, while the remainder
modulo SEGMENT SIZE corresponds to the id of the corresponding Node.

While updating these indices, we maintain the invariant that deqIdx ≤ enqIdx, and these
indices are equal when the channel is empty. An additional invariant is that the first waiter slot in
waiters array of a node is always occupied when this node is added to the queue. To maintain
this invariant, the initial values of deqIdx and enqIdx start with one. In practical applications,

6

1 class Node {
2 val id: Long // initialized on creation
3 val waiters: Waiter[SEGMENT_SIZE]
4 var next: Node? = null
5 }
6 struct Waiter {
7 var cor: Coroutine? = null
8 var el: Any? = null // element
9 }

10 class Channel {
11 var enqIdx: Long = 1 // enqueue index
12 var deqIdx: Long = 1 // dequeue index
13 var head, tail: Node
14

15 Channel() {
16 head = tail = Node{ id: 0 }
17 }
18 }

Listing 1: Data structures for the channel

64-bit counters are big enough as to never overflow. In effect, with a linked list of Node structures
we are modelling an array-based queue of unbounded size, where each node is a segment of this
array.

Similarly to the LCRQ algorithm [24], and unlike the synchronous queue [27] and Michael-
Scott [23] algorithms, both send and receive operations are linearized on the writes of the el
field to the corresponding Waiter slot in the node. Lock-freedom is guaranteed in a similar way
to LCRQ.

5.2 The send and receive Operations

Send and receive operations follow almost identical algorithm steps. They both look for a potential
rendezvous with a waiter of the opposite type (send rendezvous-es with receive, and vice versa)
or add themselves as a new waiter. This complex operation has to be performed atomically with
respect to other operations, maintaining the invariant that the queue contains waiters of one type
only (either senders or receivers), or is empty. The only difference between send and receive is
that on rendezvous send transfers its element to the waiting receive, while receive does the
opposite. So, in the following explanation we consider algorithm for the send operation only.

High-level overview. The pseudo-code for send operation is presented in Listing 5.2. Without
interference from other threads, the send algorithm proceeds as follows. First, it reads both
enqIdx and deqIdx (in this order) and checks if the queue is empty, adding itself to the queue in
this case. If the queue contains waiters, it reads the first element and checks if it has the opposite
type (if it is a send operation — the opposite type is receive). If a rendezvous is possible, it
removes the first waiter from the queue and makes the rendezvous, resuming the corresponding
coroutine with the specified element, terminating after that. Otherwise, the queue contains waiters
of the same send type and the current coroutine is added to the queue as a new waiter. The
whole send operation is enclosed in an infinite loop to retry when interference from other threads
is detected.

Adding to the waiting queue. The algorithm to add to the waiting queue is presented in
function addToQueue. The enqIdx for this operation has been already read in the beginning of
the algorithm, and references the slot to which the waiter information is going to be written to. At
first, the algorithm reads the tail pointer of the waiting queue, which references the last Node
in it. There are two cases here: if a slot is in this last node then storeWaiter function is used,
otherwise a new node is created using the addNewNode function.

When storing the waiter information to the last node, we increment the global enqIdx first, then
write the current coroutine, then write the element. The storing of the element is the linearization
point of the operation.

7

1 fun send(el: Any) = while (true) {
2 enqIdx := this.enqIdx;
3 deqIdx := this.deqIdx
4 // Are enqIdx and deqidx consistent?
5 if (enqIdx < deqIdx) continue
6 // Is the queue empty?
7 if (deqIdx == enqIdx) {
8 if (addToQueue(enqIdx, element)) {
9 park()

10 return
11 } else continue
12 }
13 head := this.head // read head
14 // Is the state consistent?
15 if (deqIdx / SEGMENT_SIZE < head.id)
16 // deqIdx is inconsistent
17 // with head
18 continue
19 if (deqIdx / SEGMENT_SIZE > head.id) {
20 // head is outdated,
21 // move it forward
22 CAS(&this.head, head, head.next)
23 continue
24 }
25 // Read the first element
26 idxInNode := deqIdx % SEGMENT_SIZE
27 firstEl := readEl(head, idxInNode)
28 if (firstEl == BROKEN) {
29 // The slot is broken, skip it
30 CAS(&this.deqIdx, deqIdx, deqIdx + 1)
31 continue
32 }
33 if (firstEl == RECEIVE_EL) {
34 // Try to make a rendezvous
35 if (resumeWaiter(head, deqIdx, elem))
36 return
37 } else {
38 // Try to add to the queue
39 if (addToQueue(enqIdx, element)) {
40 park()
41 return
42 }
43 }
44 }
45

46 fun resumeWaiter(head: Node, i: Int,
47 el: Any): Bool {
48 if (!CAS(&this.deqIdx, i, i + 1))
49 return false
50 w := head.waiters[i] // read slot
51 head.waiters[i] = null // clear
52 resume(w.cor, el)
53 return true
54 }

55 fun addToQueue(i: Int, el: Any): Bool {
56 tail := this.tail // read tail
57 // Is the state consistent?
58 if (tail.id > i / SEGMENT_SIZE)
59 return false
60 if (tail.id == i / SEGMENT_SIZE &&
61 i % SEGMENT_SIZE == 0)
62 CAS(&this.enqIdx, i, i + 1)
63 // Either store to the tail
64 // or create a new node
65 if (i % SEGMENT_SIZE != 0)
66 return storeWaiter(tail, enqIdx, el)
67 else
68 return addNewNode(tail, enqIdx, el)
69 }
70

71 fun addNewNode(tail: Node, i: Int,
72 el: Any): Bool {
73 while (true) {
74 tailNext := tail.next
75 if (tailNext != null) {
76 // Help another thread
77 CAS(&this.tail, tail, tailNext)
78 CAS(&this.enqIdx, i, i + 1)
79 return false
80 }
81 newTail := Node {id: tail.id + 1}
82 newTail.waiters[0].el = el
83 newTail.waiters[0].cor = curCor()
84 if (CAS(&tail.next, null, newTail) {
85 // Others can help us
86 CAS(&this.tail, tail, newTail)
87 CAS(&this.enqIdx, i, i + 1)
88 return true
89 } else continue
90 }
91 }
92

93 fun storeWaiter(tail: Node, i: Int,
94 el: Any): Bool {
95 if (CAS(&this.enqIdx, i, i + 1))
96 return false
97 tail.waiters[enqIdx].cor = curCor()
98 if (CAS(&tail.waiters[i].el, null, el))
99 return true

100 tail.waiters[i].cor = null
101 return false
102 }
103

104 fun readEl(n: Node, i: Int): Any? {
105 el := n.waiters[i].el
106 if (el != null) return el
107 if (CAS(&n.waiters[i].el, null, BROKEN)
108 return
109 else return n.waiters[i].el
110 }

Listing 1: Algorithm for send, without the select expression support

8

When a new node is created, our algorithm uses the same logic as the Michael-Scott queue: it
creates a new node with the current coroutine and element as the first waiter, changes the next field
of the current tail, and updates the tail field. The linearization point here is update of the next
field, as in Michael-Scott queue. Subsequent updates of the tail only maintain queue consistency,
and other concurrent operations can help updating it. In our algorithm, we also maintain the global
enqIdx similarly to how the tail pointer is maintained in the Michael-Scott queue. We update
the enqIdx after the tail is updated. In case of concurrent execution, other operations can help
with this update as well.

Rendezvous. The algorithm for rendezvous is presented as function resumeWaiter. In this
case, the first element is already read, and we only need to increment the deqIdx to remove it
from the queue. The successful CAS of deqIdx linearizes this operation.

Reading an element. When a new waiter is added to the queue, enqIdx is incremented, which
signals that the queue is non-empty. After that, another thread can try to remove a waiter from
this slot in waiters array, while the element was not written there yet. We cannot wait for the
writer to write an element in a lock-free algorithm, so if the thread reads the null element, it does
a CAS from null to a special BROKEN marker to “poison” this slot (see readEl function). On
the other hand, the writer attempts to CAS from null to the element, and aborts the operation
on encountering a broken slot. This solution is similar to LCRQ [24]. Two threads can repeatedly
interfere with each other, which would render this algorithm obstruction-free if the waiters array
were unbounded. However, the waiters array is bounded, and will be ultimately be filled with
broken slots, triggering the creation of a new node with the already stored waiter, which proceeds
as in the Michael-Scott algorithm and guarantees lock-freedom.

Concurrency. In order to preserve consistency of the data structure, all modifications before lin-
earization points are performed using CAS, restarting on failures. Modifications after linearization
points also use CAS, but do not retry on failures, as other threads can detect such inconsistencies
and help fix them.

To check that the state is consistent, after reading the enqIdx and deqIdx fields, we check
that enqIdx ≥ deqIdx. If this condition does not hold, it means that indices were updated
by concurrent operations in between reading of enqIdx and deqIdx. In this case, we retry the
operation immediately, to re-read a consistent pair of indices. However, a consistent pair of indices
can still point to wrong slots by the time we come to reading or writing them, due to concurrent
operations.

We first consider the case when the send operation decides to add itself as a waiter to the
queue, invoking addToQueue. This invocation succeeds and returns true only if enqIdx is
not updated concurrently. Because enqIdx read is the very first action in the send algorithm,
concurrent operations could only have removed elements from the waiting queue, incrementing
deqIdx. However, removing elements from the queue does not invalidate the decision to add a
new waiter to the queue: a new waiter is added when the queue either contains waiters of the same
type, or is empty.

In the case when send decides to make a rendezvous and invokes resumeWaiter, the first
action of it is to increment deqIdx using CAS, to ensure it is not updated by concurrent operations.
The first resumeWaiter to successfully perform this CAS claims this slot. This successful CAS
is a linearization point for send operation in this case.

9

5.3 The select Expression

A high-level algorithm for the select expression is presented in Listing 2 and proceeds in several
phases. Each select instance is internally represented by SelectOp class, which contains the
current coroutine (cor field) and the current state of this select instance (state field). In the
first registration phase the select instance is added to all the corresponding channels as a waiter,
similarly to the plain send and receive operations. During this phase, it can make a rendezvous
with another waiter, become selected, and jump to the removing phase. If the registration phase
completes without rendezvous, then this select is in the waiting phase until another coroutine
makes a rendezvous with it by performing an opposite operation. After that the removing phase
starts, during which all the registered waiters for this select instance are removed from the
corresponding channels to avoid memory leaks.

1 class SelectOp {
2 val id: Long // unique
3 val cor: Coroutine
4 var state: Any?
5 }
6

7 fun select(alternatives: SelectAlt[]) {
8 s := SelectOp {cor: curCor(); state: REG}
9 // Registration phase

10 regInfos := emptyList<RegInfo>()
11 for (alt in alternatives) {
12 regInfo := alt.regSelect(s, alt.element)
13 if (regInfo == null)
14 // This select is done, the corresponding
15 // channel is stored in the state field,
16 // the result -- in the coroutine.
17 break
18 regInfos.add(regInfo)
19 }
20 // Waiting phase
21 result := suspendAndGetResult() // does not suspend
22 // if was selected
23 // Removing phase
24 for (regInfo in regInfos)
25 regInfo.segment.clean(regInfo.index)
26 // Invoke the of the selected alternative
27 alternatives.find{alt -> alt.channel == channel}
28 .action(result)
29 }
30 class RegInfo { val node: Node; val index: Int }

Listing 2: High-level algorithm for select

Figure 1: Life-cycle of the state in
select instance (see SelectOp).

Figure 2: Life-cycle of the el field
in waiter slot. Broken slot is rep-
resented as a waiter with a special
BROKEN token in el field.

Registration. In the registration phase, the select instance is registered in each channel sequen-
tially, using regSelect function in Listing 2. It uses a similar algorithm as for the simple send
and receive operations, but instead of adding the current coroutine to the waiting queue, the
reference to the SelectOp object is stored. If it makes a rendezvous with an opposite operation,
we should change the state of this SelectOp object from PENDING to the corresponding channel
atomically, via CAS, as shown on Figure 1. This CAS can fail if another coroutine has already made

10

a rendezvous with this select, due to a possibility that this select instance is already stored as
a waiter in other channels. Due to this fact, we also cannot linearize on deqIdx increment: this
increment claims the slot, but the select instance can fail on doing a rendezvous if it is already
selected. Therefore, we change the el waiter field life-cycle (see Figure 2) and linearize on perform-
ing a successful CAS from Element state to DONE. This change allows updating deqIdx lazily.
However, with this change we have to update two fields atomically: the state of this select
instance and the corresponding el field; this successful update is a linearization point of performed
by this select rendezvous. For this, we use descriptors (SelectDesc state in Figure 2) similarly
to the Harris lock-free multi-word CAS [14]. Like in the Harris algorithm, concurrent operations
that encounter a descriptor in the el field help to complete the operation it describes.

Rendezvous with select. Simple send and receive operations should atomically change the
select instance state from PENDING to the corresponding channel, what is a linearization point
of successful rendezvous with select.

A rendezvous between two select-s is more complicated, it requires updating both their
states from PENDING to the corresponding channels, as well as the update in el field. Like in the
registration phase we use descriptors, and update states to a SelectDesc at the beginning of the
possible rendezvous (see Figure 1), processing the descriptor after that. It is known by the Harris
paper that we have to always set descriptors in the same order to avoid livelocks. For this, we
introduce an unique id field in SelectOp, and order select instances using it.

The removing phase. During the removing phase, we clean the corresponding waiter fields and
remove a node if it is full of processed waiter cells; the number of cleaned waiters is maintained
via an atomic counter, separately for each node. When this counter reaches SEGMENT SIZE, we
consider the node to be cleaned and logically removed from the queue. We physically remove the
node from the Michael-Scott queue using remove function presented in Listing 2.

To perform removing in constant time, we add a new prev field into Node, which references
the previous node and is initialized to the current tail when it is added to the queue. That helps
us to remove nodes from the middle of the queue; however, we forbid removing head and tail. If
the node to be removed is head, it is going to be removed after the constant number of increments
due to the head moving forward in the Michael-Scott algorithm. At the same time, if the tail is
fully cleaned, it is not considered as logically removed; it is going to be removed from the queue
right after a new tail node is added.

When remove operations do not interfere, we first get the previous and next nodes, and then
change their next (for the previous node) and prev (for the next one) links to each other. Our
construction guarantees that neither of these prev and next links are not null when the node
is neither head nor tail.

However, remove operations on neighbour nodes can interfere with each other and head or tail
updates. In order to ensure correctness, we update prev field to the closest node of lower id that
has not yet been cleaned, and the next field to the closest non-cleaned node of larger id. This
way, concurrent operations cannot break linked list invariants and effectively help each other to
move the prev and next references after logical removal, moving them to the left and to the right
respectively (methods movePrevToLeft and moveNextToRight in Listing 2, they update prev
and next pointers if the passed node has lower or greater id respectively), to physically remove all
cleaned nodes from the list.

We also need to ensure that these previous and next nodes are not logically removed, so we
check this invariant after the re-linking and help with removing these previous and next nodes if

11

1 fun remove(n: Node) {
2 next := n.next;
3 prev := n.prev
4 // check if this segment is not tail
5 if (next == null)
6 return
7 // check if this segment is not head
8 if (prev == null)
9 return

10 // Link next and prev
11 prev.moveNextToRight(next)
12 next.movePrevToLeft(prev)
13 // Help other threads
14 if (prev.cleaned == SEGMENT_SIZE)
15 prev.remove()
16 if (next.cleaned == SEGMENT_SIZE)
17 next.remove()
18 }

Listing 2: Removing empty node from the queue

needed.

6 Evaluation

We implemented the proposed rendezvous channel algorithm in Kotlin and Go [21]. As a compar-
ison point, we use the optimized implementations provided by the languages; for Kotlin, we also
implement and compare against the fair synchronous queue algorithm by Scherer et al. [27].

Go synchronizes channel operations via a coarse lock, and implements a fine-grained locking
algorithm for the select expression. In Kotlin, all channel operations are lock-free, and use a
concurrent doubly linked list, alongside with a descriptor for each operation, which is stored into
the list head field and therefore forces other threads to help with the operation first. This way,
all operations on a given channel are executing almost sequentially. The fair synchronous queue
presented of Scherer et al. [27] is based on the classic Michael-Scott queue algorithm [23]. It is
lock-free, but does not support the select expression.

Benchmarks. Our initial set of experiments consider a single channel to which coroutines apply
a series of send and receive operations. To increase the parallelism level, we increase the
maximum number of threads for the coroutines scheduler. We use the following three benchmarks
to evaluate the performance:

• Multiple-producer single-consumer: This scenario simulates a channel associated with an
actor, and shows the potential of using the proposed algorithms in actor-like scenarios. We
have the same number of coroutines as the number of threads.

• Multiple-producer multiple-consumer: This is a standard benchmark for queue-like data struc-
tures. We again have the same number of coroutines as the number of threads.

• Multiple-producer multiple-consumer with a thousand coroutines. In CSP programming, it is
often the case that one has significantly more coroutines than the number of cores (“oversub-
scription”). We therefore examine this scenario as well.

To benchmark the select expression, we use the same benchmarks, but where all operations
inside the select expression receive from an empty coroutine-local channel at the same time. This
benchmark simulates checking if the coroutine should be cancelled or not by trying to receive a
special token from a specific additional channel. This is a widely used pattern in producer-consumer
scenarios [1].

Methodology. To avoid artificial long run scenarios [23], we simulate some amount of work
between operations. Specifically, we have threads consume 100 CPU cycles in an non-contended

12

local loop, which decreases the contention on the channel. Result trends are similar for higher values
of this “backoff” term, but tend to have high variance, induced by contention, for much smaller
values. We measure the time it takes to send 106 elements over each channel implementation,
averaged over 10 runs. This time is then divided by the number of operations, to obtain the results
shown. In our algorithm, we have chosen a NODE SIZE size of 32, based on some minimal tuning.

Platform. We used a server with 4 Intel Xeon Gold 6150 (Skylake) sockets, each socket has 18
2.70 GHz cores, each of which multiplexes 2 hardware threads, for a total of 144 hardware threads.

6.1 Experimental Results

Figure 3 shows the experimental results on different benchmarks. We compare our algorithm with
Go (top) and Kotlin coroutines (bottom). In addition, we compare with the fair synchronous queue
of Scherer et al. [27], implemented in Kotlin, the results of which are presented on the bottom-side
graphs as well. We split the analysis of the results into two parts, considering the performance of
plain send and receive operations, and the select expression.

Figure 3: Performance of the proposed channel algorithm compared against Go and Kotlin ren-
dezvous channels, and the FIFO synchronous queue algorithm by Scherer et al. The results of the
select expression are shown on the same plots, but with the suffix select in line titles and using
dimmed colors.

Send and receive performance. Our algorithm outperforms the Go implementation in all
benchmarks and shows similar performance in the single thread case. A little loss of performance
at more than 64 scheduler threads in multi-producer multi-consumer benchmarks is explained by
the fact that our algorithm is more complicated to ensure lock-freedom, and therefore suffers in
terms of cache performance under high contention.

Kotlin Coroutines implementation of send and receive works similarly in the single-consumer
scenario and is outperformed by our algorithm in all other benchmarks, especially at high thread
count. This happens because Kotlin uses a considerably more complex doubly-linked list with
descriptors under the hood. Our benchmarks do not show the garbage collection overhead, which
should also be decreased significantly with our algorithm.

13

We found that the baseline Kotlin implementation performed particularly badly for large num-
ber of coroutines (see Figure 3, bottom middle). We believe these bad results are due to the
recursive helping mechanism employed by this implementation.

Our algorithm for send and receive improves on the fair synchronous queue by Scherer et
al., and shows superior results for all benchmarks. One main difference comes from the fact that
we are using a node for several items, which decreases the number of allocations and possible cache
misses.

The select expression performance. Go’s implementation uses a lock-based algorithm. In
our setup, compared with simple send and receive operations, the ‘select‘ operation needs to
acquire an extra lock for another channel without contention. In contrast, our algorithm needs to
create a descriptor for each such operation, and perform an additional CAS operations to update
the SelectOp.state field. Our algorithm also requires a concurrent version of park/unpark
primitives, which also does an additional CAS and degrades the performance. This explains a bit
higher cost of our algorithm in low-contended scenarios (≤ 4 threads). However, because of no other
difference compared with the plain ‘send‘ and ‘receive‘ operations, our algorithm shows the same
performance trend with increasing the number of threads, and outperforms Go’s implementation
by up to 2×.

Our algorithm outperforms the lock-free Kotlin baseline implementation in all scenarios. It
does so significantly at large thread counts and shows a bit better results on smaller thread counts.
Similarly to the simple send and receive operations analysis, we believe, that so bad Kotlin’s
implementation behavior on large number of threads is a consequence of a lot of helping.

7 Discussion and Future Work

We have presented the first lock-free implementation of a channel supporting complete CSP seman-
tics. Our design is built on several good ideas introduced in the context of lock-free ordered data
structures, and introduces some new techniques to handle CSP semantics, in particular, the select
expression and removing from the middle of a queue-like structure as a part of it. Our implemen-
tations [21] in Kotlin and Go outperform the existing baselines and show much better scalability,
especially for the select expression. We also believe that it is possible to achieve better perfor-
mance since our implementations are not as good optimized as Go and Kotlin Coroutines ones. In
future work, we aim to study further optimizations for our algorithm in the high-contention case,
and extend support for additional semantics, such as operation cancellation and channel closing.

References

[1] Go Concurrency Patterns: Pipelines and cancellation - The Go Blog. https://blog.
golang.org/pipelines, 2014.

[2] Akka. https://akka.io/, 2018.

[3] Erlang Programming Language. http://www.erlang.org/, 2018.

[4] Kotlin Coroutines. https://github.com/Kotlin/kotlin-coroutines, 2018.

[5] Livelock bug in the Kotling Coroutine Implementation. https://github.com/Kotlin/
kotlinx.coroutines/issues/504, 2018.

14

[6] OpenJDK: Loom. http://openjdk.java.net/projects/loom/, 2018.

[7] The Clojure Programming Language. https://clojure.org/, 2018.

[8] The Go Programming Language. https://golang.org/, 2018.

[9] The Rust Programming Language. https://www.rust-lang.org/, 2018.

[10] Ali E Abdallah. Communicating Sequential Processes. The First 25 Years: Symposium on the
Occasion of 25 Years of CSP, London, UK, July 7-8, 2004. Revised Invited Papers, volume
3525. Springer Science & Business Media, 2005.

[11] Yehuda Afek, Guy Korland, Maria Natanzon, and Nir Shavit. Scalable producer-consumer
pools based on elimination-diffraction trees. In European Conference on Parallel Processing,
pages 151–162. Springer, 2010.

[12] Gul A Agha. Actors: A model of concurrent computation in distributed systems. Technical
report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE
LAB, 1985.

[13] David R Hanson. C interfaces and implementations: techniques for creating reusable software.
Addison-Wesley Longman Publishing Co., Inc., 1996.

[14] Timothy L Harris, Keir Fraser, and Ian A Pratt. A practical multi-word compare-and-swap
operation. In International Symposium on Distributed Computing, pages 265–279. Springer,
2002.

[15] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the twenty-second annual ACM sympo-
sium on Parallelism in algorithms and architectures, pages 355–364. ACM, 2010.

[16] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Scalable flat-combining based
synchronous queues. In International Symposium on Distributed Computing, pages 79–93.
Springer, 2010.

[17] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2011.

[18] Charles Antony Richard Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, 1978.

[19] Joseph Izraelevitz and Michael L. Scott. Generality and speed in nonblocking dual containers.
ACM Trans. Parallel Comput., 3(4):22:1–22:37, March 2017.

[20] Gilles Kahn and David MacQueen. Coroutines and networks of parallel processes. 1976.

[21] Nikita Koval, Dan Alistarh, and Roman Elizarov. Channel implementations in go and kotlin.

[22] Maged M Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel & Distributed Systems, (6):491–504, 2004.

15

[23] Maged M Michael and Michael L Scott. Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, pages 267–275. ACM, 1996.

[24] Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 processors. In ACM SIG-
PLAN Notices, volume 48, pages 103–112. ACM, 2013.

[25] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane Micheloud, Nikolay
Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. The scala language specifica-
tion, 2007.

[26] William N Scherer III, Doug Lea, and Michael L Scott. A scalable elimination-based exchange
channel. SCOOL 05, page 83, 2005.

[27] William N Scherer III, Doug Lea, and Michael L Scott. Scalable synchronous queues. In
Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 147–156. ACM, 2006.

[28] WN Scherer III and ML Scott. Nonblocking concurrent objects with condition synchronization.
In Proc. of the 18th Intl. Symp. on Distributed Computing, 2004.

[29] Nir Shavit and Dan Touitou. Elimination trees and the construction of pools and stacks: pre-
liminary version. In Proceedings of the seventh annual ACM symposium on Parallel algorithms
and architectures, pages 54–63. ACM, 1995.

[30] Nir Shavit and Asaph Zemach. Combining funnels: a dynamic approach to software combining.
Journal of Parallel and Distributed Computing, 60(11):1355–1387, 2000.

[31] H̊akan Sundell and Philippas Tsigas. Lock-free and practical doubly linked list-based deques
using single-word compare-and-swap. In International Conference On Principles Of Distributed
Systems, pages 240–255. Springer, 2004.

16

