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Abstract
Traditional concurrent programming involves manip-
ulating shared mutable state. Alternatives to this pro-
gramming style are communicating sequential processes
(CSP) [1] and actor [2] models, which share data via
explicit communication. Rendezvous channel is the com-
mon abstraction for communication between several
processes, where senders and receivers perform a ren-
dezvous handshake as a part of their protocol (senders
wait for receivers and vice versa). Additionally to this,
channels support the select expression.
In this work, we present the first efficient lock-free

channel algorithm, and compare it against Go [3] and
Kotlin [4] baseline implementations.

1 Channel Algorithm
Channel Structure. The overall channel structure is
represented as Michael-Scott lock-free queue [5] of wait-
ing processes. However, instead of dynamically creating
a new Node for each operation to be suspended, our Node
has a fixed-size waiters array of NODE_SIZE structures
of Waiter type, which stores both the process and the el-
ement to be sent (a special marker element RECEIVE_EL
is used for receive operations). To manipulate with
these slots wemaintain global 64-bit enqIdx and deqIdx
indices, which indicate the positions to enqueue a new
waiter and to dequeue the oldest one correspondingly.

While updating these indices, we maintain the invari-
ant that deqIdx ≤ enqIdx, and these indices are equal
if the channel is empty. An additional invariant is that
the first waiter slot in waiters array of a node is always
occupied when this node is added to the queue, what
guarantees lock-freedom in a similar way to LCRQ [6].
The send and receive Operations. Both send and
receive look for a potential rendezvous with a waiter
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of the opposite type (send rendezvous-es with receive,
and vice versa) or add themselves as new waiters. This
complex operation has to be performed atomically with
respect to other ones, maintaining the invariant that the
queue contains waiters of one type only (either senders
or receivers), or is empty. We consider the algorithm for
send operation only since receive works similar.

The high-level pseudo-code for send operation is pre-
sented in the Listing 1. Without interference from other
threads, it firstly reads both enqIdx and deqIdx and
checks if the queue is empty, adding itself to the queue
in this case. If the queue contains waiters, it reads the
first element and checks its type. If a rendezvous is pos-
sible, it removes the first waiter from the queue and
resumes the corresponding process with the element to
be sent, completes the operation after that. Otherwise,
the queue contains senders, and the current process is
added as a new waiter. The whole send operation is
enclosed in an infinite loop to retry when interference
from other threads is detected.
1 fun send(el: Any) = while true {

2 (enqIdx , deqIdx) := (this.enqIdx , this.deqIdx)
3 if enqIdx < deqIdx: continue // Inconsistent

4 if deqIdx == enqIdx: // Is the queue empty?

5 if addToQueue(enqIdx , element ):

6 suspend (); return // Wait for a receiver

7 else:
8 head := this.head // Read head

9 if deqIdx / NODE_SIZE < head.id:

10 continue // State is not consistent

11 if (deqIdx / NODE_SIZE > head.id):

12 CAS(&this.head , head , head.next)

13 continue // Head was outdated

14 // Read the first element

15 firstEl := readEl(head , deqIdx % NODE_SIZE)

16 if firstEl == BROKEN: // Is the slot broken?

17 CAS(&this.deqIdx , deqIdx , deqIdx + 1)

18 continue // Skip the broken slot

19 if firstEl == RECEIVE_EL:

20 if resumeWaiter(head , deqIdx , elem):

21 return // Made a rendezvous

22 else:
23 if addToQueue(enqIdx , element ):

24 suspend (); return // Wait for a receiver

25 }

Listing 1. High-level algorithm for send.

At the point of adding the current process to the
queue, the enqIdx has been already read in the begin-
ning of the operation, and references the slot into which
the waiter information is going to be written (we write
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the current process pointer at first, then the element to
be sent). The algorithm either writes the information to
the corresponding slot in the tail segment, or creates a
new segment using the same logic as the Michael-Scott
queue. Since we also maintain the global enqIdx, we
update it after the tail pointer, and other operations can
help with this update as well.

In case of rendezvous, the first element is already read,
and we only need to increment the deqIdx to remove it
from the queue, what should be performed by CAS.

Similarly to LCRQ, we guarantee progress of concur-
rent manipulations with a slot by marking it as “broken"
in case a read happens before the write. This way, when
a new waiter is adding, the slot should be updated from
null to the current process pointer by CAS. If a concur-
rent operation comes before this update, it marks the
slot as “broken" by CAS from null to BROKEN.
The select Expression. In addition to the standard
send and receive operations, the CSP model supports
selection among several alternates. This select expres-
sion makes possible to await multiple send and receive
invocations on different channels, and guarantees that
only the first one which becomes available is selected.
Each invocation is represented by a small descrip-

tor with this select invocation state, which is either
PENDING or SELECTED. The operation of the select al-
gorithm proceeds in several phases. In the first regis-
tration phase the descriptor is added to all the corre-
sponding channels as a waiter. During this phase, it can
make a rendezvous with an opposite operation, become
SELECTED and jump to the removing phase. If the regis-
tration completes without rendezvous, then this select
operation is in the waiting phase until another opposite
operation performs a rendezvous with it. In this case, the
state is changed to SELECTED and the removing phase
starts, when all the registered waiters for this select
invocation are removed from other channels in order to
avoid memory leaks.
A rendezvous with the select operation is compli-

cated by the fact that it is (being) registered into multiple
channels and can concurrently rendezvous with multi-
ple operations of the opposite type, which can be select
operations as well. So, rendezvous becomes a complex
operation that must update multiple memory locations
atomically. For this, we use descriptors similarly to the
Harris multi-word CAS [7].

2 Evaluation
We implemented the proposed channel algorithm in
Kotlin and Go, and compared it with the provided by
these languages baseline implementations.

In our experiments we use multiple-producer single-
consumer and multiple-producer multiple-consumer

Figure 1. Performance of the proposed channel algo-
rithm compared against Go (top) and Kotlin (bottom).
benchmarks. Since both Go and Kotlin use coroutines,
we increase parallelism by increasing the maximum
number of threads for the coroutines scheduler, and use
the same number of coroutines (the results for bigger
number of coroutines are similar, and therefore omitted).
To benchmark the select expression, we use it to send
and receive elements, receiving from a coroutine-local
channel at the same time, what simulates receiving a
cancellation token (this is a standard pattern in Go).
We simulate some amount of work between opera-

tions, consuming 100 CPU cycles in a non-contended
local loop. We also have chosen a NODE_SIZE size of 32.
We evaluated the performance on a server with 4

sockets, Intel Xeon Gold 6150 (Skylake) with enabled
hyper-threading in each, 144 hardware threads in total.
According to Figure 1, our send/receive algorithm

shows a comparable performance on the small number
of threads and beats both Go and Kotlin in case of high
parallelism level, demonstrating much better scalability.
The select expression performance has the same trends
and also outperforms both implementations in almost all
scenarios. However, it is a bit slower than Go in case of
low concurrency due to overhead in using descriptors.
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