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1 Introduction
Concurrent programming can be notoriously complex
and error-prone. Programming bugs can arise from a
variety of sources, such as operation re-reordering, or
incomplete understanding of the memory model. A va-
riety of formal and model checking methods have been
developed to address this fundamental difficulty. While
technically interesting, existing academic methods are
still hard to apply to the large codebases typical of indus-
trial deployments, which limits their practical impact.
This paper presents Lincheck [1] — a new practi-

cal tool for testing concurrent algorithms implemented
in JVM-based languages, such as Java, Kotlin, or Scala.
Roughly, Lincheck takes the list of operations on the
data structure to be tested, generates a series of concur-
rent scenarios, executes them in either stress testing or
model checking mode, and checks whether there exists
some sequential execution which can explain the results.
We use Lincheck to test the concurrent algorithms in
the Kotlin Coroutines library [2] and to check a set of
student assignments. In addition, we used it to find sev-
eral known and unknown bugs in popular libraries, such
as the race between removing and adding an element to
the head of the Java’s ConcurrentLinkedDeque.

2 Lincheck by Example
Listing 1 represents an incorrect implementation of
counter (lines 1–4) and a sample Lincheck test for it
(lines 6–12) in Kotlin. Here, we use both stress testing
and model checking execution modes. (lines 6–7). The
initial state of the examined data structure is specified
by constructor; here we simply create a new counter
(line 9). Line 10 specifies the only inc operation on
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our counter, which should be marked with @Operation
annotation. Finally, we run the analysis by invoking
LinChecker.check function on the testing class (line 11).

1 class Counter {
2 var value = 0
3 fun inc(delta: Int) = value += delta // returns new
4 }
5
6 @StressCTest
7 @ModelCheckingCTest
8 class CounterTest {
9 val c = Counter () // init state
10 @Operation fun inc(delta: Int) = c.inc(delta)
11 @Test run() = LinChecker.check(this::class)
12 }

Listing 1. Counter Test Example
Since the counter above is incorrect, the correspond-

ing test fails with an error similar to the one from List-
ing 2.While Lincheck always provides a failing scenario
with the wrong results (if found), the model checking
mode also provides a trace to reproduce the error.
| inc(1): 1 | inc(2): 2 |
Execution trace:
| | inc(2) |
| | R:0 at Counter.inc(Counter.kt:3) |
| inc(1): 1 | |
| | W(2) at Counter.inc(Counter.kt:3) |
| | RESULT: 2 |

Listing 2. Example of Invalid Execution

3 Scenarios Generation and Testing
Scenarios. Users specify the number of scenarios to be
examined, as well as the numbers of threads and oper-
ations in them; after that, Lincheck generates them in
a random way. It worth noting that we support some
popular constraints like single producer or consumer for
queues, for which the corresponding operations appear
only in one thread. Note, that the inc(..) operation in
Listing 1 takes an integer parameter delta which speci-
fies the increment amount. At the same time, Listing 2
provides a specific scenario, with some input values to
the inc(..) invocations; they are also generated us-
ing a random function on the specified range (it can be
configured for each parameter).
Stress Testing. This mode was inspired by the JCStress
harness for testing Java Memory Model on predefined
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scenarios [3]. Essentially, it fairly starts real threads,
synchronizes them, and executes the operations, repeat-
ing the run the specified number of times in hope to
hit an interleaving that produces incorrect results. In
Lincheck, we also added random busy-wait cycles be-
tween the operations and inside them to increase the
number of different interleavings. We find this mode
very useful to check algorithms for bugs introduced by
low-level effects, such as a missed volatile modifier.
Model Checking. Since we developed Lincheck to test
our non-blocking algorithms, most of which de-facto
use the sequential consistency memorymodel, we added
a model checking mode, which was originally inspired
by the CHESS framework for C# [4], which studies all
possible schedules with a bounded number of context
switches. In this mode, we ignore weak memory model
effects; it is recommended to use both stress testing and
model checking in practice. In Lincheck, we specify the
total number of interleavings to be studied, so that the
number of context switches increase during the analysis.
Thus, Lincheck finds an incorrect schedule with the
fewest number context switches possible.
Internally, we iteratively construct a tree of all pos-

sible interleavings with progress information for each
node. An example of such a tree for the scenario from
Listing 1 is presented in Figure 1. Each edge in this tree
represents a choice that can be done by the scheduler,
while leaves represent the resulting interleavings. In
order to explore interleavings evenly, we store the per-
centage of examined interleaving for each subtree, and
use weighted random choices to choose the next switch
point. Thus, the probability to start the next interleaving
from the first thread is two times higher than from the
second.

Figure 1. A partially built tree of possible schedules
with one contexts switch for the scenario from List-
ing 1. Rectangles are nodes with choices, circles are
unexplored nodes, triangles are interleavings.

As for implementation, we use byte-code instrumenta-
tion [5] to invoke the analysis after each shared variable
access; thus, users should not modify their algorithms in
order to use model checking. Moreover, we implemented
several heuristics to avoid useless switches.

4 Results Verification
In order to checkwhether the results are correct, Lincheck
tries to explain them though some sequential execution

which does not reorder operation in threads. We define
the sequential semantics via building a labeled transi-
tion system (LTS): the states represent the data structure
states and the transitions are labeled with operations
and the corresponding results.

The figure above illustrates the process of LTS-based
results verification for the counter. Starting from the
initial state, Lincheck tries to make a transition by an
operation from one of the threads; if the results of the
verifying step and LTS coincide, it repeats the procedure
recursively. Thus, it finds sequential executions which
produce the verifying results, or guarantees that there
is no such one.
LTSConstruction. Since LTS is infinite, Lincheck builds
transitions lazily, invoking operations of the provided
concurrent implementation in a sequential way; it is also
possible to specify a simpler sequential implementation
instead. Note, that several transition sequences may
lead to the same state. For example, applying inc(-1)
after the first inc(1) leads to the initial state. Since
Lincheck does not know the formal specification of
the testing data structure, it is tricky to explain why
these two increments lead to the same state as the ini-
tial one. As a solution, users should define equivalency
relation between states by implementing equals() and
hashCode() methods.
Other Contracts. In addition to linearizability, we have
supported the dual data structures formalism [6] for
blocking by design operations (e.g., remove in blocking
queues) and several relaxed contracts, such as serializ-
ability, quiescent consistency, quasi-linearizability [7],
and quantitative relaxation [8].
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