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1 Introduction
Multi-producer multi-consumer FIFO queue is one of the
fundamental concurrent data structures used in software
systems. A lot of progress has been done on designing
concurrent bounded and unbounded queues [1–10]. As
previous works show, it is extremely hard to come up
with an efficient algorithm. There are two orthogonal
ways to improve the performance of fair concurrent
queues: reducing the number of compare-and-swap
(CAS) calls, and making queues more memory-friendly
by reducing the number of allocations. The most up-
to-date efficient algorithms choose the first path and
use more scalable fetch-and-add (FAA) instead of CAS
[3, 4, 10]. For the second path, the standard way to de-
sign memory-friendly versions is to implement queues
on top of arrays [2–4, 10]. For unbounded queues it is
reasonable to allocate memory in chunks, constructing
a linked queue on them; this approach significantly im-
proves the performance. The bounded queues are more
memory-friendly by design: they are represented as a
fixed-sized array of elements even in theory. However,
most of the bounded queue implementations still have
issues with memory allocations — typically, they either
use descriptors [5, 8] or store some additional meta-
information along with the elements [1, 6, 7, 9].

The arising question is whether it is possible to design
a lock-free bounded queue that uses onlyO(1) (indepen-
dent of the capacity) additional memory. Surprisingly,
we found only one paper [7] that partially answers this
question. However, their algorithm is subject to ABA
problem even if all the inserted elements are distinct: the
algorithm uses only two different null elements; thus,
if one thread becomes asleep for two “rounds” (i.e., the
pointers head and tail made two traversals through
the whole array of the queue), it can incorrectly place
the element into the queue after the wake-up. In our
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algorithm, we fix this problem by using an infinite sup-
ply of null values. Moreover, our algorithm is much
simpler and clear for understanding.
Our contribution This paper presents a new lock-free
bounded queue algorithm that uses onlyO(1) additional
memory and has two practical constraints. At first, it
requires all the elements to be distinct; thus, avoiding
the ABA problem on storing and retrieving. We find
this constraint reasonable since many software systems
use queues for tasks or identifiers, which are usually
unique, for example, maintained by a garbage collector.
The second constraint is that we are provided with an
unlimited supply of versioned null values, so that we
can use different null-s for different rounds. This con-
dition is also practical and can be achieved by stealing
one bit from addresses (values) to mark them as null
values and use the rest of the address (value) for stor-
ing versions. We believe that the proposed algorithm is
the first step towards indeed memory-friendly queues
and, further, memory-friendly variants of other data
structures.
2 Algorithm Description
Specification. We define the bounded queue as a stan-
dard FIFO queue with the limited capacity so that the
number of stored in the queue elements cannot exceed
it. The following operations are supported:

• offer(e) inserts the element e and returns true
if the queue is not full, returns false otherwise;

• poll returns the oldest element, or returns null
if the queue is empty.

Initialization. The structure of our queue is presented
in listing below. All elements are stored in array a (line 2)
of the queue capacity size; it is initially filled with nulls
of round 0 (⊥0). To know the target positions of next
offer and poll, we maintain two counters, offers and
polls— the total numbers of completed offer and poll
invocations; taken by modulo CAPACITY these counters
indicate the proper slots. The queue is empty when these
counters coincide (polls == offers), and is full if their
difference offers - polls is equal to the capacity.

1 class BoundedQueue <T>(val CAPACITY: Int) {

2 val a: T[] = Array(CAPACITY) // a[i] = ⊥0
3 var offers: Long = 0L

4 var polls: Long = 0L

5 }
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Offer algorithm. The pseudo-code is presented in the
listing below. At first, the algorithm atomically snap-
shots the monotonously increasing offers and polls
counters using the double-collect technique (lines 3–6).

After that, it checks whether the queue is full (line 8).
Note, that there can be a concurrent poll invocation
that already retrieved the element but has not increased
polls counter yet — we can linearize the fullness detec-
tion before this poll.

At the next step, the algorithm tries to put the element
into the slot using CAS from null value to the element
(line 12); this CAS synchronizes parallel producers so that
only one of them succeeds at this slot. It is possible for
offer to suspend and skip its round: another element
can be inserted at this slot and further retrieved. In this
case, we need a mechanism to detect that the round
is missed, and fail the element insertion CAS. For this
purpose, we use different null values for each round;
they are usually implemented via stealing the highest
bit from element addresses or values.
After the element insertion attempt, we guarantee

that either the current operation or a concurrent one has
been succeeded. Therefore, the algorithm increments
the number of completed offer invocations (line 14),
and returns true if the algorithm successfully inserted
the element, retrying the whole operation otherwise.

1 // All inputs should be different

2 fun offer(e: T): Bool = while (true) {

3 o := offers

4 p := polls

5 // is `o` still the same?

6 if o != offers: continue

7 // is the queue full?

8 if o == p + CAPACITY: return false

9 // try to perform the offer

10 i := o % CAPACITY

11 round := o / CAPACITY

12 success := CAS(&a[i], ⊥round, e)

13 // increment the counter

14 CAS(&offers , o, o + 1)

15 if success: return true

16 }

Poll algorithm. The pseudo-code is presented in the
listing below. Roughly, the algorithm reads the coun-
ters and the element to be retrieved (lines 2–7), checks
whether the queue is not empty (line 9), exchanges the
element with the null value for the next round (line 17),
and increments the number of successful polls at the end
(line 19). Considering the constraint that all elements
are different, CAS for retrieving an element can succeed
only if the slot has not been changed.
Similarly to the offer operation, we use the double-

collect technique to get an atomic snapshot (lines 2–7).
When the algorithm checks whether the queue is

empty (line 9), it can get into a situation, where the
counters coincide, but the array contains one element —

there can be a concurrent offer which successfully in-
serted its element, but has not updated the counter yet;
we linearize the emptiness detection before this offer.

Since our poll algorithm increments the correspond-
ing counter at the end, the element can be already taken
at the point of getting the snapshot while the counter
is still not updated. The algorithm checks whether the
element from the snapshot is null for the next round,
helping to increment the counter and retrying the oper-
ation in this case (lines 12–15).

1 fun poll (): T? = while (true) {

2 p := polls

3 o := offers

4 i := p % CAPACITY

5 e := a[i]

6 // is `p` still the same?

7 if p != polls: continue

8 // is the queue empty?

9 if p == o: return null

10 // is the element already taken?

11 nextRound = p / CAPACITY + 1

12 if e == ⊥nextRound {

13 CAS(&polls , p, p + 1) // helping

14 continue

15 }

16 // try to retrieve the element

17 success := CAS(&a[i], e, ⊥nextRound)

18 // increment the counter

19 CAS(&polls , p, p + 1)

20 if success: return e

21 }
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