
MULTI-QUEUES CAN BE STATE-OF-THE-ART PRIORITY
SCHEDULERS

Anastasiia Postnikova
ITMO University

postnikovaanastasiaa@gmail.com

Nikita Koval
JetBrains Research

nikita.koval@jetbrains.com

Giorgi Nadiradze
IST Austria

giorgi.nadiradze@ist.ac.at

Dan Alistarh
IST Austria

dan.alistarh@ist.ac.at

September 3, 2021

ABSTRACT

Designing and implementing efficient parallel priority schedulers is an active research area. An
intriguing proposed design is the Multi-Queue: given n threads and m ≥ n distinct priority queues,
task insertions are performed uniformly at random, while, to delete, a thread picks two queues
uniformly at random, and removes the observed task of higher priority. This approach scales well,
and has probabilistic rank guarantees: roughly, the rank of each task removed, relative to remaining
tasks in all other queues, is O(m) in expectation. Yet, the performance of this pattern is below that
of well-engineered schedulers, which eschew theoretical guarantees for practical efficiency.
We investigate whether it is possible to design and implement a Multi-Queue-based task scheduler
that is both highly-efficient and has analytical guarantees. We propose a new variant called the Steal-
ing Multi-Queue (SMQ), a cache-efficient variant of the Multi-Queue, which leverages both queue
affinity—each thread has a local queue, from which tasks are usually removed; but, with some prob-
ability, threads also attempt to steal higher-priority tasks from the other queues—and task batching,
that is, the processing of several tasks in a single insert / remove step. These ideas are well-known for
task scheduling without priorities; our theoretical contribution is showing that, despite relaxations,
this design can still provide rank guarantees, which in turn implies bounds on total work performed.
We provide a general SMQ implementation which can surpass state-of-the-art schedulers such as
Galois and PMOD in terms of performance on popular graph-processing benchmarks. Notably, the
performance improvement comes mainly from the superior rank guarantees provided by our sched-
uler, confirming that analytically-reasoned approaches can still provide performance improvements
for priority task scheduling.

1 Introduction

Scalable concurrent priority schedulers are a key ingredient for efficiently parallelizing algorithms arising in graph
processing, computational geometry, or scientific simulation. In such settings, algorithms are usually structured as a
series of prioritized tasks, each of which accesses a subset of the shared algorithm state, computes a local update, and
applies the update to the shared state. Many classic problems fit this pattern, such as graph processing algorithms (e.g.,
BFS or MST computations), Dijkstra’s single-source shortest paths (SSSP), or Delaunay mesh triangulation.

Often, algorithm semantics imply a natural task priority ordering. A classic example is Dijkstra’s SSSP algorithm,
where the first task to be processed should be the one corresponding to the active node that is closest to the source.
Concurrent schedulers often relax this sequential order to enable parallellism, but also, importantly, to reduce the
overhead of the task scheduler’s implementation, which can become extremely contended if perfect priority order is

ar
X

iv
:2

10
9.

00
65

7v
1

 [
cs

.D
S]

 2
 S

ep
 2

02
1

enforced [17]. However, relaxing the priority order excessively can also decrease performance, as it leads to wasted
work: in Dijkstra’s SSSP algorithm, for example, processing a node out-of-order at a distance that is higher than its
minimal distance from the source is useless, since the node will need to be re-processed later, when its distance is
updated to the correct one. Generally, relaxed priority schedulers induce non-trivial trade-offs between the higher
scalability of the scheduling mechanism itself, allowed by out-of-order execution, and the potential for wasted work
caused by excessive speculation.

The sustained recent progress on concurrent priority scheduling can be viewed through the lens of this trade-off. The
influential Galois line of work, e.g. [19, 22] proposed a family of highly-efficient schedulers which significantly relax
priority order, specifically focusing on performance rather than priority guarantees [17]. As a consequence, the sched-
uler has low overhead, but may induce high wasted work [27]. This approach provided state-of-the-art performance
upon its publication, and has inspired significant follow-up work, notably in terms of hardware implementations,
e.g. [1, 15]. Yesil et al. [27] performed an in-depth analysis of the relaxation-vs-wasted-work trade-off in concur-
rent priority schedulers, and proposed a new scheduler called PMOD, combining the high scalability of Galois-type
schedulers, with a dynamic priority management heuristic which reduces wasted work.

A parallel research thread has been on providing efficient relaxed schedulers with guarantees on the maximum amount
of priority rank relaxation, e.g. [6, 23, 26, 24]. Of these, arguably the most popular design is the Multi-Queue [23],
which works roughly as follows: given n threads, we instantiate m ≥ n concurrent priority queues, which will store
tasks. To insert a task, a thread simply places it into a random priority queue. To remove a task, the thread picks two
priority queues at random, and removes the top element of higher priority. (For simplicity, we discuss concurrency-
related details in the later sections.) Alistarh et al. [5] showed that a sequential variant of the Multi-Queue ensures that
the rank of an element removed is always O(m), in expectation, and O(m logm), with high probability in the number
of queues m. Follow-up work showed that similar guarantees can be extended to concurrent executions [3], and gave
work bounds for some task-based algorithms when executed via Multi-Queue-like priority schedulers [4, 7, 2]. Despite
their guarantees, Multi-Queue schedulers are known to have lower overall performance relative to efficient scheduling
heuristics [17, 27].

Contribution. In this paper, we show that these two lines of work can be unified, providing a highly-efficient, practical
concurrent priority scheduler, while still maintaining theoretical rank guarantees, under analytical assumptions, for
variants of the scheduler.

An obvious reason for the lower performance of Multi-Queues relative to practical heuristics is poor cache efficiency,
as the basic process requires a high number of random accesses to maintain rank guarantees. A simple practical
approach to address such issues, which we also adopt, is to affinitize threads to queues, assigning some subset of
queues “preferentially” to each thread. For insertions, each thread can pick one of these preferential queues with
(higher) probability pinsert , relative to inserting into other queues.

We would like to apply a similar approach for deletions. Yet, allowing fully-local removals would perturb the two-
choice process, and cause divergence [21, 5]. Nevertheless, we show that the process can be adapted as follows: to
remove, with probability psteal the thread considers stealing tasks from a randomly chosen other queue, comparing
the top element of a local queue with that on top of a globally-chosen random queue, and removing the higher-
priority element. Otherwise, the thread directly removes from a local queue. As most insertions and deletions using
the above scheme are local, this can result in a very unbalanced task distribution among queues, our analysis will
adapt a stochastic scheduling model, by which threads are scheduled according to a scheduling distribution ~π =
(π1, π2, . . . , πn), where thread i is scheduled in each step with probability πi, and we place upper and lower bounds
on the maximum and minimum scheduling probabilities. Under these assumptions, we will be able to still provide
rank guarantees.

A second performance issue with standard Multi-Queues is that, in practice, the overhead of inserting or removing a
task can be large relative to the task execution time. The standard approach to address this issue is task batching, by
which multiple tasks are inserted or removed at a single step. We show that the above random process can be resilient
to task batching. Both the above approaches are well-known in the context of task scheduling without priorities,
e.g. [9, 10], but have not been well-explored in the context of priority scheduling.

Our theoretical contribution is a generalization of the Multi-Queue analysis of [5] showing that, under assumptions,
the above process, which we call the stealing Multi-Queue (SMQ), induces a non-trivial trade-off between the stealing
probability, the scheduling properties, and the average rank of elements removed. For instance, assuming a Multi-
Queue formed of m = n queues (one queue per thread), with task batches of size O(B), and a balanced thread
scheduling distribution, we show that the expected rank removed at a step is O(Bm), and O(Bm log(Bm)) with high
probability. These bounds hold irrespective of the running time.

2

On the practical side, our work starts from an examination of the possible performance benefits of Multi-Queues
relative to scheduling heuristics [20, 27], but also of their performance bottlenecks. The main benefit, which motivates
our investigation, is the lower wasted work in real tasks, correlated to their rank guarantees. On the other hand,
as mentioned, standard Multi-Queues have poor cache locality, relatively high per-task cost, and, so far, have had
very limited specific implementation support. Our implementation addresses these shortcomings, via the following
optimizations.

We begin by investigating the “optimal” data structure for implementing individual queues. While previous schedulers
partitioned the tasks into sub-buffers, maintained either manually or semi-automatically by priority range, we adopt an
efficient variant of a sequential heap for local task structure. To allow for efficient stealing, we affix a stealing buffer
to each thread, into which the queue’s owner periodically places tasks, which can be either stolen by other threads
or later processed by the queue owner. With this in place, we examine various mechanisms for allowing concurrent
access to heaps and stealing buffers, and implement a task batching mechanism similar to the one described above.

This basic mechanism allows for several extensions, in particular a non-trivial NUMA-aware variant, which defines
affinities and probabilities such that we seek to minimize out-of-socket accesses.

Experimental Results. We provide a general SMQ implementation on top of the Galois graph processing framework,
which includes standard and NUMA-aware variants of the SMQ. Experiments show that our designs can surpass state-
of-the-art schedulers such as OBIM and PMOD in terms of throughput and scalability when executing popular graph
algorithms such as SSSP or A*. Of note, much of the performance improvement comes from significantly less wasted
work, which is linked to the improvement in rank guarantees provided by our scheduler.

Related Work. To our knowledge, the Multi-Queue-like data structure was given by the parallel branch-and-bound
framework by Karp and Zhang [16], which distributed tasks randomly among queues, assigned to processors, and also
remove tasks uniformly at random. We stress however that their proposal is in the context of classic task scheduling
in the PRAM model, and that their design does not provide rank guarantees under asynchrony. Our construction
starts from the Multi-Queue of Rihani, Sanders, and Dementiev [23], who introduced this design and provided a
simple argument showing that the expected rank of the first removed element is O(m). Follow-up work by Alistarh et
al. [5] provided a more general and involved argument, showing that, for a sequential variant of the Multi-Queue, the
expected rank of any removal is O(m), by linking Multi-Queues with the classic (1 + β) random process of Peres,
Talwar, and Wieder [21]. Follow-up work by the same authors [3] extended the analysis to a concurrent version of the
Multi-Queue, under analytical assumptions.

Relative to this work, we adapt the standard Multi-Queue semantics so that they result in efficient implementations,
in particular with respect to caching, add queue locality and task batching to the original design, and then adapt the
analysis approach of [5] to prove rank bounds for the resulting algorithm.

There has been a tremendous amount of work on efficient scheduling heuristics for fine-grained task-based programs,
especially in the context of graph processing [18, 13, 27, 20, 25, 11, 12]. A complete survey is beyond our scope,
so we focus on the two works that are closest to ours. The first is [20], which details the design, implementation,
and practical performance of the Galois system, focusing on the OBIM (Ordered By Integer Metric) scheduler. In
brief, this scheduler assigns one bag (unordered set) per task priority class, which is empirically defined. Each bag
is implemented as one or more FIFO queues, one per socket. Enqueues insert into the bag corresponding to the
task priority, creating the bag if required, and each queue element is mapped to a batch (chunk) of tasks. Threads
dequeue chunks from their socket’s queue; if that is empty, the thread steals from a remote queue. Tasks in a batch are
performed one at a time. The list of bags is maintained in a global map, which is mirrored locally by each thread for
cache efficiency.

Yesil et al. [27] start from the observation that the communication-avoiding pattern of OBIM can lead to significant
wasted work, due to the relatively high number of priority inversions. Hence, they propose a heuristic which defines
priority groups, which change dynamically at runtime. More precisely, PMOD tries to adapt the number of different
priority bags in OBIM, by merging sets of similar priorities, so as to reduce the number of empty bags during runtime,
thus trying to ensure that threads always have work to do. This is implemented via a dynamic merging mechanism.
Conversely, the algorithm detects when there are too few priority bags, therefore splitting bags which are too full.
These operations are controlled via carefully-designed heuristics.

Our design shares some features with these schedulers: in particular, we also recognize the importance of “localizing”
the queues, and of batching for cache efficiency. However, it also differs in key ways, required to provide providing
rank guarantees for the resulting scheduler. (None of these two previous heuristics have rank guarantees, and we do
not believe that such guarantees could be shown without significant modifications.) For instance, in keeping with the
Multi-Queue design, do not split tasks per priority “level,” and instead maintain a local heap structure for each queue.

3

Further, the stealing mechanism we use is different from both the standard Multi-Queue, and from the previous priority
scheduling heuristics.

2 The Stealing Multi-Queue

2.1 The Classic Multi-Queue Design

The classic Multi-Queue uses m sequential queues, each protected by a lock, and distributes requests among them.
Typically, m is taken to be the number of threads T multiplied by a constant factor C ≥ 2, making it likely that
individual operations will not interfere with each other when taking locks. An insert(x) comes, it chooses uniformly
random queue and tries to lock it. When successful, it adds x into it and releases the lock. If the lock acquisition fails,
the operation restarts. Similarly, delete() picks two different queues uniformly at random, and removes from the
higher priority top element. Then, it tries to lock the chosen queue and retrieve the top task from it, releasing the lock
at the end. If the lock acquisition fails, the operation restarts.

Listing 1 presents a pseudo-code of a simplified Multi-Queue version which may return null in delete() when
the queue it removes an element from becomes empty. The version described here faithfully models the Galois
implementation of Multi-Queues [20].

1 class MultiQueue <E> {
2 val queues = Queue <E>[C * T]
3
4 fun insert(task: E) = while(true) {
5 q := queues[random(0, queues.size)]
6 if !tryLock(q): continue
7 q.add(task)
8 unlock(q)
9 return

10 }
11
12 fun delete (): E? = while(true) {
13 i1, i2 := distinctRandom (0, queues.size)
14 q1 := queues[i1]; q2 := queues[i2]
15 if !tryLock(q1, q2): continue
16 q := q1.top() < q2.top() ? q1 : q2
17 task := q.extractTop ()
18 unlock(q1, q2)
19 return element
20 }
21 }

Listing 1: The classic Multi-Queue implementation.

Optimization 1: Task Batching. A standard way to reduce the ratio between synchronization cost and task execution
time in schedulers is task batching: delete() operations can retrieve multiple tasks from the same queue at once,
storing them into a fixed-size thread-local buffer, and insert(..)-s put the tasks into another thread-local buffer,
flushing it to a random queue when the number of buffered tasks exceeds the buffer capacity. Most practical graph
processing frameworks implement some variant of this optimization, e.g. [20]. Our analysis can bound its impact on
the rank guarantees of the Multi-Queue.

The benefits of this approach are that (1) it reduces the number of lock acquisitions by a constant factor which is
approximately the batch size and (2) it reduces the number of cache misses and contention compared to the version
which accesses different queues on each insert(..) and delete(). However, it clearly impacts rank guarantees,
since multiple elements are retrieved from the same queue so that other queues and further task insertions are “ignored”
until the buffered tasks are processed. When this optimization is applied to insert operations, buffered tasks cannot be
processed, so it also makes the implementation less fair.

Optimization 2: Temporal Locality. A similar, but different approach to reduce the cache coherence overhead is to
use the same queue for a sequence of delete() or insert() operations, making it more likely that the corresponding
data is already cached at the current core. Specifically, in this variant, the thread flips a biased coin before each new
operation to decide whether to keep using the same queue as in the previous operation, or potentially pick another
queue, according to the algorithm. (The coin is biased towards locality.) Our analysis approach can also provide rank
bounds for this approach, although we will focus on analyzing the more performant stealing variant.

4

The difference between this method and task buffering is that updates to the queue (e.g. newly inserted tasks by
another thread) would be visible to the current thread in this case. However, this approach is more costly, as it
requires synchronization upon every operation, although obtaining the same lock multiple times, when uncontended,
is relatively cheap.

We can examine the difference in terms of Dijkstra’s SSSP algorithm. In a step, the algorithm usually relaxes multiple
edges, and thus adds several tasks to the queue. With temporal locality, the sequence of insert(..) invocations may
insert part of all of these tasks into the same queue. Moreover, it is possible to insert several elements into the same
queue with a single lock acquisition: with the lock acquired, the algorithm flips a coin after the insertion of each task
to determine whether to keep inserting elements, or whether to potentially switch queues. With this optimization, the
cost of lock acquisitions can be lower than in the classic Multi-Queue, but is still greater than with task buffering,
where a fixed set of tasks is always inserted. The advantage, however, is in relatively better rank guarantees.

2.2 The Stealing Multi-Queue

The experimental data in Section 5 show that task batching and temporal locality optimizations can improve the
performance of Multi-Queue scheduling for graph algorithms by up to 3× relative to the classic variant. However,
accessing queues by different threads and lock acquisitions still have high performance cost. Therefore, we constructed
a new variant which we call the Stealing Multi-Queue (SMQ), which eschews locks, and improves cache locality
beyond the optimizations discussed above, while maintaining rank guarantees under analytic assumptions.

Without task priorities, the classic way to implement schedulers, e.g. [10], is to use thread-local queues and allow
stealing, so that threads can both add and retrieve tasks from their own queues, and steal tasks when the queues
become empty.

The idea behind SMQ is similar — it also allows task stealing, but it uses thread-local priority queues. To guarantee
fairness, SMQ steals tasks not only when it finds the thread-local queue empty, but also with a constant probability
in each step. Specifically, in each step, with probability psteal , the thread compares the priority of the top element in
its local queue with that of a randomly chosen queue. In Section 3 we provide a rank analysis for this process under
analytic assumptions.

Stealing lends itself to additional optimizations. For example, we employ the task batching optimization for task
stealing: threads do not steal a single task at a time, but a whole batch. Intuitively, we aim to take advantage of the
fact that in e.g. graph algorithms, tasks with similar priorities refer to nodes that are close to eachother in the graph,
and therefore it would be more efficient that they are processed together.

High-Level Algorithm. Listing 2 presents a high-level pseudocode for the SMQ algorithm. Thread-local queues are
stored in the queues array, where queues[t] is associated with thread t (line 3). Additionally, each threads owns
a stolenTasks buffer of capacity SIZEsteal - 1 that is thread-local and stores the tasks stolen from another queue
(line 4).

1 class StealingMultiQueue <E> {
2 // queues[t] is associated with thread ‘t‘
3 val queues: Queue <E>[threads]
4 threadlocal val stolenTasks = Buffer <E>(SIZEsteal -1)
5
6 fun insert(task: E) =
7 queues[curThread ()]. addLocal(task)
8
9 fun delete (): E? {

10 // Do we have previously stolen tasks?
11 if stolenTasks.isNotEmpty ():
12 return stolenTasks.removeFirst ()
13 // Should we steal?
14 with psteal probability {
15 task := trySteal ()
16 if task != null: return task
17 }
18 // Try to retrieve the top task
19 // from the thread -local queue
20 task := queues[curThread ()]. extractTopLocal ()
21 if (task != null) return task
22 // The local queue is empty , try to steal
23 return trySteal ()

5

24 }
25
26 fun trySteal (): T? {
27 // Choose a random queue and check whether
28 // its top task has higher priority
29 t := curThread ()
30 qId := random(0, queues.size)
31 if queues[qId].top() < queues[t].top():
32 // Try to steal a better task!
33 stolen := queues[qId].steal(STEAL_SIZE)
34 if stolen.isEmpty (): return null // failed
35 // Return the first task and add the others
36 // to the thread -local buffer of stolen ones
37 stolenElements.add(stolen [1:])
38 return stolen [0]
39 }
40 }

Listing 2: High-level Stealing Multi-Queue (SMQ) algorithm. It assumes that Queue is provided with an additional
steal(k) function that retrieves top k tasks (or less, if the queue size is lower). The implementation of this steal(k)
function is discussed in Section 4.

The insert(..) operation is straightforward—it simply adds the specified task into the thread-local queue (lines 6–7).

The delete() operation first processes any buffered stolen tasks (lines 11–12). In case the buffer is empty, it steals
tasks from another queue with probability psteal and returns the stolen task of highest priority if this succeeds (lines 14–
17). If the algorithm did not steal or stealing has failed (the trySteal() invocation at line 15 returned null), delete()
retrieves the top task from the thread-local queue and returns it (lines 20–21). However, the thread-local queue can be
empty. In this case, the algorithm tries to steal tasks from another queue (line 23). As before, this implementation may
return null if not task is found.

The stealing logic is implemented in the trySteal() function (lines 26–39) which attempts to steal SIZEsteal tasks
from a random queue if the top element from the thread-local queue has lower priority, and returns the top task as a
result, storing all the resulting tasks into the thread-local stolenTasks buffer.

3 Analysis of the Stealing Multi-Queue

We consider the following simplified variant of the SMQ algorithm in the analysis.

1 class StealingMultiQueue <E> {
2 // queues[t] is associated with thread ‘t‘
3 val queues: Queue <E>[threads]
4
5 fun insert(task: E) =
6 queues[curThread ()]. add(task)
7
8 fun delete (): List <E> {
9 with psteal probability { // should we steal?

10 return trySteal ()
11 }
12 // Never empty in the theoretical model
13 return queue[curThread ()]. extractTopB ()
14 }
15
16 fun trySteal (): List <E> {
17 // Choose a random queue and check whether its
18 // top task has higher priority , ⇒ lower rank
19 t := curThread ()
20 qId := random(0, queues.size)
21 if (queues[qId].top() < queues[t].top ()):
22 return queues[qId]. extractTopB ()
23 }
24 return queues[t]. extractTopB ()

6

25 }

Listing 3: The stealing Multi-Queue algorithm assumed in the analysis. It assumes that each queue is equipped with
extractTopB() method which retrieves and returns its top B elements.

Analytical Model. We now provide rank bounds for the above algorithm, in a simplified analytical model. As in [5],
we assume that all element insertions occur initially and in increasing rank order. Additionally, we assume that tasks
are inserted at random among the queues, and that extractTopB() operations occur atomically, so that we can analyze
a sequential “linearized” version of the process.

Importantly, we assume a stochastic scheduling model similar to that of [8], where we are given a thread scheduling
distribution ~π = (π1, π2, . . . , πn) for the n threads, where πi is the probability with which thread πi is scheduled to
perform operation in a step. Since we assume that all insertions occur initially, threads will not observe empty queues,
so our main objective will be to characterize the expected rank bound of the elements removed, relative to all elements
present in the queues. The extractTopB() operation retrieves B elements, for constant B; however, for convenience,
we will first describe the case B = 1 first.

Let psteal be the stealing probability, that is: once a thread is scheduled to perform a delete operation, with probability
psteal stealing occurs: it picks a second queue uniformly at random among all queues, and “steals” its top element if
the rank of its top element is smaller than the rank of the element on top its local queue. If no stealing occurs, the
thread simply deletes the top element of its local queue and returns it. Finally, we assume that there exists a constant
γ such that, for each thread i, 1− γ ≤ 1

πin
≤ 1 + γ, for γ ≤ 1/2. Intuitively, the parameter γ bounds how unfair the

thread scheduler may be. For instance, the value γ = 0 means that the thread scheduler is completely uniform.

The Main Theorem. Given the above definitions, our main claim is the following.
Theorem 1. Assume the thread scheduling probability distribution ~π = (π1, π2, . . . , πn) with constant γ ≥ 0 such

that, for each thread i, 1−γ ≤ 1
πin
≤ 1+γ, for γ ≤ 1/2,1 and let psteal be the stealing probability. If γ

(
1

psteal
−1
)
≤

1
2n , then the SMQ process which removes B elements during the delete operation satisfies that, for any time step

t, the expected maximum rank of elements on top of queues is O

(
nB(1+γ)
psteal

(
log n + log (1+γ)

psteal

))
and the expected

average rank (maximum and average ranks are computed over Bn elements: B elements on top of n queues) is at

most O

(
nB(1+γ)
psteal

log (1+γ)
psteal

)
.

Discussion. The above claim is somewhat abstract, so let us build intuition via some examples. Consider first the case
of a uniform scheduling distribution, γ = 0, and no task batching, B = 1. Then, if the stealing probability is constant,
the expected average rank is O(n), and the expected maximum rank is O(n log n). If we wish to steal less often, i.e.
psteal = O(1/n), then the expected rank cost becomes O(n2 log n) in both cases.

More generally, the claim also shows that, if psteal is large enough, we consistently obtain good rank bounds. Given
parameter 0 ≤ q ≤ 1, if psteal ≥ 1 − 1

nq+1 ≥
1
2 and γ ≤ nq

2n , then γ
(

1
psteal

− 1
)
≤ 1

2n and 1+γ
psteal

= O(1). Hence,
the expected average rank bound becomes O(n), irrespective of the scheduling imbalance. We can also use smaller
psteal at the expense of larger rank bounds and smaller tolerated γ. If γ ≤ psteal

2n ≤
1
2n , threads are scheduled almost

uniformly. Here, the expected average rank bound becomes O
(
n log 1

psteal

psteal

)
.

Analysis Overview. Our analysis generalizes the argument of [5] to the more intricate variant of the Multi-Queue
process which we consider. Due to space constraints, we only sketch the argument here, and provide the full proof as
supplementary material.

The first step is similar to [5]: we describe a coupling which equates the discrete SMQ process described above to a
continuous balls-into-bins process. We replace the n queues with n bins, each of which initially contains a single ball
of label 0. We start by inserting infinitely many balls into the bins, so that for each bin i the difference between the
labels of two consecutive balls is an exponential random variable with mean πi. Then, we perform T insertions in the
modified SMQ process (recall that elements are inserted in the increasing rank order) as follows : for each element
with rank t ≤ T , we insert it into i if the label (ball) with rank t is inserted in the bin i. Finally, we remove the labels
which have rank larger than T from the bins. Note that after the insertion phase the rank distributions of labels (balls)

1If the scheduling distribution is uniform, then γ = 0.

7

in bins and elements in queues are equal. The first technical step is a Lemma proving that elements are inserted into
the queues in the same way as the original SMQ process.

Assuming that the number of initial insertions T is large, we extend the coupling to the second removal phase. In each
removal step, we first pick a “local” bin i with probability πi, and then flip a coin to decide whether to steal or not.
With probability psteal , we decide to steal. If so, we pick a second bin uniformly at random from among all n, and
examine the two balls of lowest label (highest priority) on “top” of the two bins. Following the priority process, we
remove the ball of lowest label among the two, uncovering the next ball in the bin. If the coin flip dictated that we not
steal, then we directly remove the ball on top of bin i. (Notice that, in both cases, the label increment for a chosen bin
is exponentially-distributed). If batch size B > 1, we remove B labels from the bin. In the SMQ process we make
the same random choices as in the balls and bins process and follow the same removal procedure, and since the rank
distributions are equal after the insertion phase, it is easy to see that they will stay equal after every removal. That is,
if the ball is removed from the bin k then the element is removed from the queue k.

The rank cost at a step is the rank of the label of the removed ball among all labels still present in all the bins. Because
of the coupling, this will imply that the rank cost in the SMQ process is also bounded in expectation.

Let `i(t) be the label on top of bin i at time step t. Let xi(t) = `i(t)/n be the normalized value of this label, and let
µ(t) = 1

n

∑n
i=1 xi(t) be the average normalized label at time step t. As in [21, 5], we will be analyzing the potential

function

Γ(t) =
n∑
i=1

e−α(xi(t)−µ(t)) +

n∑
i=1

eα(xi(t)−µ(t)), (1)

for a suitable constant α > 0, which we will define later.

A key ingredient of this analysis is the (1 +β)-choice random process [21], which is similar to the continuous process
we defined above, with the difference that in order to delete an element, with probability (1 − β) we choose a single
bin uniformly at random and delete from it, and with probability β we choose two bins uniformly at random and delete
from the one which has a ball of lower label on top. (Thus, in expectation, we perform (1 + β) choices at a step.)

Bounding the Potential. Fix an arbitrary time step t, and the labels x1(t), x2(t), ...xn(t) on top of the bins. Let
Γc(t+ 1) be the potential at time step t+ 1 if the label is deleted by our continuous process, and let Γβ(t+ 1) be the
potential at time step t+ 1 if the label is deleted by 1 + β process. Our strategy is to show that there exists β such that

E[Γc(t+ 1)|(xi(t)i=1,n] ≤ E[Γβ(t+ 1)|(xi(t)i=1,n].

At this point, our argument diverges from that of [5]. First, we define Sc(i) to be the probability that we delete a label
from one of the first i bins in our process continuous process, and let Sβ(i) be the same probability for the (1 + β)

process. Our first technical step is to show that, under reasonably chosen parameter values γ
(

1
psteal

− 1
)
≤ 1

2n and
β = psteal

2(1+γ) , we have that for any 1 ≤ i ≤ n, Sc(i) ≥ Sβ(i).

Based on this, our key technical step will be to use coupling in order to show that the potential dominance claimed
above holds for suitable chosen parameter values. Subsequently, we can use [5, Lemma 3] to show that for any step
t+ 1:

E[Γc(t+ 1)|(xi(t)i=1,n] ≤E[Γβ(t+ 1)|(xi(t)i=1,n]

≤
(

1− Ω

(
β2

n

))
Γ(t) + poly(

1

β
).

The rest of the proof leverages the implied potential bound to obtain rank bounds on the elements removed. First, we
use the above supermartingale type bound to prove that for any time step t ≥ 0: E[Γc(t)] ≤ O

(
poly

(
1
β

)
n
)
. Finally,

we can use Theorems 4 and 5 in the full version of [5] to show that for the continuous process and time t ≥ 0, the
expected maximum rank of labels on top of bins at time step t is O

(
n
β (log n + log 1

β)
)

and expected average rank is

O
(
n
β log 1

β

)
. Plugging in β = psteal

2(1+γ) in the above rank provides the proof of the theorem for B = 1. The proof for
B > 1 is slightly more involved, and is described in the supplementary material.

8

4 SMQ Implementation Details

In Section 2.2 we presented the general SMQ design, skipping the details of the stealing implementation. Here,
we address this gap. In our investigation, we have first used concurrent skip-lists as thread-local queues as well
as sequential d-ary heaps augmented with special stealing buffers. We have found the latter approach to perform
consistently better, and therefore we focus on it here.

SMQ via d-ary Heaps with Stealing Buffers. Listing 4 presents the pseudo-code for this design. We use sequential
d-ary heaps (typically, with parameter d = 4) as thread-local queues for storing tasks and separate the synchronization
and stealing from the sequential heap implementation.

1 class HeapWithStealingBufferQueue <E> {
2 val q = Heap <E>() // local d-ary heap
3 // Other threads can steal from this buffer
4 val stealingBuffer = Buffer <E>(SIZEsteal)
5 // 64-bit register with the current buffer epoch
6 // and the "tasks are stolen" flag
7 val (epoch , stolen): (Int , Bool) = (0, true)
8
9 fun addLocal(task: E) {

10 q.add(task) // add to the local queue
11 if stolen: fillBuffer ()
12 }
13
14 fun extractTopLocal (): E? {
15 if stolen: fillBuffer ()
16 return q.extractTop ()
17 }
18
19 fun top(): E? = while(true) {
20 // Read the current epoch and the flag
21 (curEpoch , curStolen) := (epoch , stolen)
22 if stolen: return null // can we steal?
23 top := stealingBuffer.first() // read the top
24 if curEpoch != epoch: continue // restart
25 return top // return the top buffer element
26 }
27
28 fun steal(size: Int): List <E> = while(true) {
29 // Read the current epoch and the flag
30 (curEpoch , curStolen) := (epoch , stolen)
31 if stolen: return emptyList () // can’t steal
32 // Read the tasks non -atomically
33 tasks := stealingBuffer.read()
34 atomic { // atomically update (epoch , stolen)
35 if epoch != curEpoch || stolen: continue
36 stolen = true // the tasks have been stolen!
37 }
38 return tasks
39 }
40
41 fun fillBuffer () { // stolen == true
42 stealingBuffer.clear()
43 // Fill the buffer , keep the flag ‘true ‘
44 repeat(STEAL_SIZE) {
45 task := q.extractTop ()
46 if task == null: break
47 stealingBuffer.add(task)
48 }
49 // Increment the epoch and re-set the flag
50 (epoch , stolen) = (epoch + 1, false)
51 }
52 }

Listing 4: Stealing Multi-Queue implementation via d-ary heaps with stealing buffers.

9

To steal efficiently, we maintain the metadata such as a buffer epoch and a “tasks are stolen” flag in a single 64-bit
integer field (line 7). When the tasks in the buffer are stolen, the flag should be set to true. Simultaneously, when the
buffer is filled with new tasks, the epoch increases.

Thus, the stealing procedure presenting in the steal(..) function (lines 28–39) is organized as follows. First, it
atomically reads the current epoch and the flag (line 30). If the tasks have been already stolen, the function fails and
returns an empty list (line 31). Next, it reads the buffer in a non-atomic way in the hope that the tasks are still in the
buffer (line 33). Then, the algorithm atomically checks that the epoch has not been updated, and changes the flag from
false to true (line 34–37). On success, it returns the already read tasks; otherwise, it restarts the procedure from the
beginning.

In the add(..) operation, the task is added to the thread-local heap (line 10) followed by a fillBuffer() invocation
if the tasks from the buffer are stolen (line 11). The extractTop() operation also delegates the work to the sequential
heap, filling the buffer with new tasks if needed (lines 14–17).

The top() operation uses the same approach as stealing: it reads the current epoch and flag (line 21), checks that
the tasks are not stolen (line 22), reads the top task from the buffer (line 23), and checks that the epoch has not been
changed (line 24). When the epoch is the same, the operation returns the already read task; otherwise, it restarts.

To refill the buffer (lines 51–41), the algorithm clears it first (line 42) and puts SIZEsteal top tasks from the local
sequential heap (lines 44–48). During this procedure, the “tasks are stolen” flag is true, so other threads do not
interfere. In the end, the algorithm applies refilling by atomically increasing the epoch and resetting the flag (line 50).

NUMA-Awareness. The classic Multi-Queue design does not consider Non-Uniform Memory Access (NUMA) ef-
fects, and threads are likely to access queues located on another socket, which can affect performance. We present a
simple strategy which significantly reduces overheads, and fits the analysis of Section 3.

Assume N NUMA nodes with Ti threads each (here, i is the node index). In this configuration, we create Ti × C
queues for each node. This way, the total number of queues stays the same as before. The straightforward idea is for
threads to preferentially access queues from the same node, so all the synchronization conflicts are likely to be resolved
on the last-level cache (usually, L3) of the current NUMA node. For this, we use a weighted probability distribution
to be used when choosing a new queue to sample as part of either the Multi-Queue or the Stealing Multi-Queue. For a
given thread, all Ti×C queues associated with its own node will have weight 1 while all other queues, associated with
other nodes, will have weight 1

K , where K > 1 is a constant. Intuitively, by adjusting the multiplier K, we balance
fairness with the number of “out-of-node” accesses.

Specifically, given a thread from note i, the total weight of all queues isWi =
∑
j 6=i

Tj ·C
k +Ti×C. The probability of

choosing a queue from the same node by a thread from the node i is TiC/Wi. Thus the expected number of “internal”
queue choices by all threads in node i is Ei = T 2

i · C/Wi, and the expected ratio of “internal” queue choices by all
threads in all nodes is E =

∑
Ei. This metric represents the “NUMA-friendliness” of the algorithm. Typically, since

we use all cores, the number of threads on each NUMA node is equal to T/N , where T =
∑
i Ti. When K > N ,

which is reasonable in practice, we simplify to the expression of E to

Eint ≈ T ×
(

1− 1

K

)
.

In our implementation, we aim to keep this ratio constant as we increase the thread count, and therefore we make K
depend linearly depend on the number of threads T .

5 Evaluation

We now examine how the various optimizations we discussed impact the performance of the Multi-Queue, and com-
pare relative to high-performance scheduling heuristics, such as OBIM and and its adaptive PMOD version, Spray-
List [6], and the random-enqueue local-dequeue (RELD) algorithm from [14]. We examine throughput versus a single-
threaded baseline (and hence also scalability) but also the total amount of additional work incurred due to scheduling.
We build on Galois [20], a popular graph processing framework, which is still maintained and provides efficient
implementations of the above two schedulers. Our implementation will be made open-source upon publication.

Hardware. Experiments were performed an AMD machine featuring two EPYC 7702 64-Core processors with hyper-
treading for 256 total hardware threads, and an Intel machine with features four Intel Xeon Gold 5218 processors with
16 cores each for 128 hardware threads in total.

10

Graph |V| |E| Description
USA 24M 58M Full USA roads

WEST 6M 15M Roads of the western part of the USA

TWITTER 41M 1468M Directed graph describing follower relation in Twitter

WEB 50M 1930M Directed web crawl of .sk domain

Table 1: Input graphs for the algorithms used to benchmark different schedulers.

Figure 1: Ablation of stealing probability psteal and steal buffer size, for SMQ implemented using d-ary heaps, relative
to wasted work, for a subset of benchmarks. Experiments are executed on the AMD machine on 256 threads. The
baseline is the Multi-Queue on 256 threads with C = 4. The fastest configuration for each benchmark is highlighted
with a black border. Best viewed in color.

Benchmarks. We use the real-world road and social graphs listed in Table 1 for experiments. The first two graphs
represent the full USA road network and its West part. The second two graphs represent follower relations in the
Twitter social network and a web crawl of .sk domain; edge weights are uniform random in the range [0,255].

We use various graph algorithms to test schedulers under different workloads: Single-Source Shortest Paths (SSSP):
The Galois implementation of SSSP based on delta-stepping. We evaluate it on the USA and WEST road graphs, and
on TWITTER and WEB social network graphs. Breadth-First Search (BFS): The classic traversal algorithm a graph,
where the weight of each edge is 1, evaluated on USA and WEST road graphs, and on TWITTER and WEB social
network graphs. A*: This algorithm calculates the distance between two vertices, guided by the expected distance to
the destination vertex from the currently visiting one. As a heuristic, the equi-rectangular approximation is used. We
evaluate it on the USA and WEST road graphs. Minimum Spanning Tree (MST): We use Boruvka’s algorithm to
find a spanning tree over all vertices with minimum total edge weight, with task priority equal to the degree of the
associated vertex. We evaluate it on the USA and USA-WEST graphs.

Metrics. For all runs, we record end-to-end times for the given tasks, as well as total number of tasks executed, to
measure wasted work relative to the baseline. We use 10 repetitions, and show the average. (Standard deviation is low,
so we omit confidence intervals for readability.)

Methods and Tuning. We use the PMOD and OBIM baselines provided as part of Galois [20]. We follow PMOD [27]
for parameter and benchmark setups. Specifically, we start from their optimized choices for the ∆ and CHUNK_SIZE
parameters, for both OBIM and adaptive PMOD schedulers, and perform additional tuning to maximize throughput on
our setup. Full experimental data is presented in Appendix Section B. We also examine variants of the classic Multi-
Queue, including Random Enqueue Local Dequeue (RELD), with and without the suggested buffering and locality
optimizations. (In brief, we found that these optimizations, without stealing, improved the throughput of the baseline
implementation by up to 3.4×). Further, we implemented the SMQ proposal described in Section 2 both with local
skip-lists, and using local heaps. We also implemented the buffering optimization.

Impact of Optimizations and Parameters. Our first set of experiments aims to examine the impact of the task
batching and temporal locality optimizations on the performance of Multi-Queue-based proposals. We begin with the
classic Multi-Queue and its variants. We found that most variants “scale,” in the sense that their maximal throughput

11

Figure 2: Comparison between the best and the default variants of SMQ, optimized classic MQ, tuned OBIM, PMOD,
and other advanced schedulers on the AMD platform. Speedups are versus the baseline Multi-Queue, running on a
single thread. See text for full details.

is achieved at the highest number of threads. (Lower performance after 128 threads is explained by the fact that hyper-
threads share their cache, thus technically halving its size.) Generally, our optimizations significantly improve the
performance of the Multi-Queue by up to 3.4×. Appendix C presents a set of experiments on both AMD and Intel
platforms, evaluating in terms of wall-clock speedup, and total number of tasks performed, relative to the sequential
baseline.

Next, we examine the impact on the various parameter values, in particular local queue implementation, stealing buffer
size and stealing probability, on the performance of the Stealing Multi-Queue (SMQ). Figure 1 presents results for the
heap-based SMQ, in terms of heatmaps examining speedup (top row) and wasted work (work increase) for the various
parameter values. (Appendix D contains a full set of results on all graphs and on both AMD and Intel platforms, also
examining the skip-list variant.) We observe that the speedups are fairly stable across parameter values, except at very
high batch sizes, and that loss of performance correlates well with increase in number of tasks (work) performed.

Comparison with PMOD and OBIM. Figure 2 presents the results of the speedup and total work comparison between
the SMQ (both using heaps and skip-lists), the best-performing variant of the optimized Multi-Queue with NUMA-
aware sampling, PMOD, OBIM, RELD, and Spray-List schedulers, executed on the AMD machine. (Please see the
Appendix F for magnified versions of this graph on both AMD and Intel platforms.) We present two variants of the
SMQ with respect to the tuning process. SMQ (Tuned) adopts parameter values derived via task-specific tuning (see
Figure 1), while SMQ (Default) picks a set of reasonable default parameters (STEAL_SIZE = 4, psteal = 1/8,K =
8) across all benchmarks.

We note the following. First, an examination of the throughput graphs (top) shows that the SMQ provides the highest
throughput at 256(128 for Intel) threads in 10 out of the 12 experiments, and is virtually tied in the 6th experiment
(MST). The only experiments where it has lower overall performance relative to OBIM and PMOD is the BFS experi-
ment on social network graphs. The simple explanation is that, here, throughput is more important than task ordering:
the task priorities are “flat” due to the graph having high expansion, and there is essentially no difference in terms

12

of the total number of tasks performed by the different schedulers. On all other tasks, we find that the SMQ pro-
vides similar or higher performance relative to scheduling heuristics, of up to 1.84×. Focusing on the SSSP and A*
experiments, the main reason is the lower number of total tasks performed, as well as a relatively low per-operation
cost due to batching and the stealing buffer implementation. Of note, the number of tasks performed appears to be
near-constant with respect to the number of threads/queues. We further emphasize that this finding is valid even in the
absence of task-specific tuning.

Next, we notice that, perhaps surprisingly, even the standard Multi-Queue can provide competitive results on a range
of benchmarks, as long as it uses the optimized and NUMA-aware variants. However, its throughput does not surpass
that of the SMQ, motivating the stealing optimization. Finally, we note that both OBIM and PMOD provide very
competitive results, and good scalability in all benchmarks. We encourage the reader to examine the Appendix for
additional experiments and ablation studies.

6 Discussion

We presented an in-depth investigation of scalable priority scheduling for graph algorithms, focusing on a new Multi-
Queue variant which we show to be competitive with state-of-the-art scheduling heuristics, while still providing the-
oretical guarantees. In future work, we plan to examine comparisons with alternative parallelization approaches [12],
and other applications, such as iterative machine learning algorithms e.g. [2].

References

[1] Maleen Abeydeera, Suvinay Subramanian, Mark C Jeffrey, Joel Emer, and Daniel Sanchez. Sam: Optimizing
multithreaded cores for speculative parallelism. In 2017 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 64–78. IEEE, 2017.

[2] Vitalii Aksenov, Dan Alistarh, and Janne H Korhonen. Scalable belief propagation via relaxed scheduling.
Advances in Neural Information Processing Systems, 33, 2020.

[3] Dan Alistarh, Trevor Brown, Justin Kopinsky, Jerry Z Li, and Giorgi Nadiradze. Distributionally linearizable
data structures. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, pages
133–142, 2018.

[4] Dan Alistarh, Trevor Brown, Justin Kopinsky, and Giorgi Nadiradze. Relaxed schedulers can efficiently paral-
lelize iterative algorithms. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
pages 377–386, 2018.

[5] Dan Alistarh, Justin Kopinsky, Jerry Li, and Giorgi Nadiradze. The power of choice in priority scheduling. arXiv
preprint arXiv:1706.04178, 2017. In Proceedings of PODC 2017.

[6] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The spraylist: A scalable relaxed priority queue. In 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco,
CA, USA, 2015. ACM.

[7] Dan Alistarh, Giorgi Nadiradze, and Nikita Koval. Efficiency guarantees for parallel incremental algorithms
under relaxed schedulers. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures, pages
145–154, 2019.

[8] Dan Alistarh, Thomas Sauerwald, and Milan Vojnović. Lock-free algorithms under stochastic schedulers. In
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, pages 251–260, 2015.

[9] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson, Keith H Randall, and Yuli
Zhou. Cilk: An efficient multithreaded runtime system. ACM SigPlan Notices, 30(8):207–216, 1995.

[10] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by work stealing. Journal
of the ACM (JACM), 46(5):720–748, 1999.

[11] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework for parallel graph algorithms us-
ing work-efficient bucketing. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 293–304, 2017.

[12] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. Theoretically efficient parallel graph algorithms can be fast
and scalable. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, pages
393–404, 2018.

13

[13] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In OSDI, volume 12, page 2, 2012.

[14] Mark C Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez. A scalable architecture for
ordered parallelism. In Proceedings of the 48th International Symposium on Microarchitecture, pages 228–241,
2015.

[15] Mark C Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez. Unlocking ordered parallelism
with the swarm architecture. IEEE Micro, 36(3):105–117, 2016.

[16] R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search and branch-and-bound. Journal of the ACM,
40(3):765–789, 1993.

[17] A Lenharth, D Nguyen, and K Pingali. Concurrent priority queues are not good priority schedulers. In Proceed-
ings of the 21th International European Conference on Parallel and Distributed Computing, pages 209–221,
2015.

[18] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin, and Joseph Hellerstein.
Graphlab: A new framework for parallel machine learning. arXiv preprint arXiv:1408.2041, 2014.

[19] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure for graph analytics. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pages 456–
471, New York, NY, USA, 2013. ACM.

[20] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure for graph analytics. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pages 456–
471, New York, NY, USA, 2013. ACM.

[21] Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allocations and the 1 + beta-choice process.
Random Struct. Algorithms, 47(4):760–775, December 2015.

[22] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M Amber Hassaan, Rashid Kaleem, Tsung-
Hsien Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-Lojo, et al. The tao of parallelism in algorithms.
In Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation,
pages 12–25, 2011.

[23] Hamza Rihani, Peter Sanders, and Roman Dementiev. Brief announcement: Multiqueues: Simple relaxed con-
current priority queues. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’15, pages 80–82, New York, NY, USA, 2015. ACM.

[24] Konstantinos Sagonas and Kjell Winblad. The contention avoiding concurrent priority queue. In International
Workshop on Languages and Compilers for Parallel Computing, pages 314–330. Springer, 2016.

[25] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming, pages
135–146, 2013.

[26] Martin Wimmer, Jakob Gruber, Jesper Larsson Träff, and Philippas Tsigas. The lock-free k-lsm relaxed priority
queue. In ACM SIGPLAN Notices, volume 50, pages 277–278. ACM, 2015.

[27] Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas. Understanding priority-based scheduling
of graph algorithms on a shared-memory platform. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–14, 2019.

14

A Full Analysis

General Approach. Our analysis will generalize the argument of [5] to the more intricate variant of the Multi-Queue
process which we consider. The first step in both analyses is similar: we describe coupling which equates the discrete
SMQ process described above to a continuous balls into bins process.

We start with the insertion phase. Imagine we replace the n queues with n bins, each of which initially contains a
single ball of label 0. We start by inserting infinitely many balls into bins, so that for each bin i the difference between
the labels of two consecutive balls is an exponential random variable with mean πi. Then, we perform T insertions in
the modified SMQ process (recall that elements are inserted in the increasing rank order) as follows : for each element
with rank t ≤ T , we insert it into the queue i if the label(ball) with rank t is inserted in the bin i. Finally, we remove the
labels which have rank larger than T from the bins. Note that after the insertion phase the rank distributions of labels
(balls) in bins and elements in queues are equal. In order to show that the coupling is valid we need the following
Lemma, which proves that elements are inserted into the queues in the same way as the original SMQ process.
Lemma 1 (Coupling, Theorem 2 in [5]). Let Ii←j be the event that the label with rank j is located in bin i and let
Pr[Ii←j] be its probability. We have that Ii←j is independent from Ii′←j′ for all j 6= j′ and Pr[Ii←j] = πi.

Assuming that the number of initial insertions-T is large, we describe how coupling works in a second removal phase.
In each removal step, we first pick a “local” bin i with probability πi, and then flip an additional coin to decide
whether to steal or not. With probability psteal , we decide to steal. If so, we pick a second bin uniformly at random
from among all n, and examine the two balls of lowest label (highest priority) on “top” of the two bins. Following the
priority process, we remove the ball of lowest label among the two, uncovering the next ball in the bin. If the coin
flip dictated that we not steal, then we directly remove the ball on top of bin i. (Notice that, in both cases, the label
increment for a chosen bin is exponentially-distributed). When batch size B > 1, we remove B labels from the bin,
but for the simplicity we are going to deal with the B = 1 case first. In the SMQ process we make the same random
choices as in the balls and bins process and follow the same removal procedure, and since the rank distributions are
equal after the insertion phase, it is easy to see that they will stay equal after every removal. That is, if the ball is
removed from the bin k then the element is removed from the queue k. The rank cost at a step is the rank of the label
of the removed ball among all labels still present in all the bins. Thus, to minimize this cost, we would like to always
remove the ball of lowest label, but this is obviously unlikely due to the random nature of our process. However, we
will show that the rank cost at each step is still well-bounded in expectation. Because of the coupling, this will imply
that the rank cost in the SMQ process is well-bounded in expectation as well, we therefore focus on the analysis of
the ranks in the balls into bins process.

Let `i(t) be the label on top of bin i at time step t. Let xi(t) = `i(t)/n be the normalized value of this label, and let
µ(t) = 1

n

∑n
i=1 xi(t) be the average normalized label at time step t. As in [21, 5], we will be analyzing the potential

function

Γ(t) =

n∑
i=1

e−α(xi(t)−µ(t)) +

n∑
i=1

eα(xi(t)−µ(t)), (2)

for a suitable constant α, which we will define later.

We now overview the analysis of [5], and then proceed to outline the major differences. A key ingredient of this
analysis is the (1 + β)-choice random process [21], which is similar to the continuous process we defined above, with
the difference that in order to delete an element, with probability (1− β) we choose a single bin uniformly at random
and delete from it, and with probability β we choose two bins uniformly at random and delete from the one which has
a ball of lower label on top. (Thus, in expectation, we perform (1 + β) choices at a step.)

In our analysis, we will aim to “loosely couple” the SMQ process with a variant of the (1 + β)-choice process, with
parameters β = Ω(γ) and α = Θ(β). As we will see, this coupling will not be exact (unlike the coupling between the
discrete and continuous processes above). Yet, we will be able to use the properties of the (1 + β)-choice process to
bound the properties of the SMQ process.

Returning to the (1 + β)-choice process, Lemma 2 in [5] shows the following potential bound, for any step t ≥ 0:

E[Γ(t+ 1)|x1(t), x2(t), ..., xn(t)] ≤
(

1− Ω

(
β2

n

))
Γ(t) + poly

(
1

β

)
. (3)

Assuming that Inequality (3) holds, Lemma 3 in [5] proves that for any time step t ≥ 0:

E[Γ(t)] ≤ O
(
poly

(
1

β

)
n
)
. (4)

15

Finally, given that (4) holds, Theorems 4 and 5 in [5] show that for t ≥ 0, expected maximum rank of labels on top of
bins at time step t is O

(
n
β (log n+ log 1

β)
)

and expected average rank is O
(
n
β log 1

β

)
.

Relative to this argument, we will aim to show that there exists β such that Equation (3) holds for continuous process.
This will imply bounds on the expected average rank and expected maximum rank based on β.

We would like to point at out that we provide Lemma and Theorem numbers based on full version of [5].

Bounding the Potential. Fix an arbitrary time step t, and the labels x1(t), x2(t), ...xn(t) on top of the bins. Let
Γc(t+ 1) be the potential at time step t+ 1 if the label is deleted by our continuous process, and let Γβ(t+ 1) be the
potential at time step t+ 1 if the label is deleted by 1 + β process. Our goal is to show that there exists β such that

E[Γc(t+ 1)|x1(t), x2(t), ..., xn(t)] ≤E[Γβ(t+ 1)||x1(t), x2(t), ..., xn(t)]. (5)

We assume that bins are sorted in the increasing order of their top labels. Let Sc(i) be the probability that we delete a
label from one of the first i counters in our process continuous process, and let Sβ(i) be the same probability for the
(1 + β) process. We can prove the following property:

Lemma 2. If γ
(

1
psteal
− 1
)
≤ 1

2n and β = psteal
2(1+γ) , we get that for any 1 ≤ i ≤ n, Sc(i) ≥ Sβ(i).

Proof. First, notice that we have that:

Sβ(i) = (1− β)
i

n
+ β

i2 + 2i(n− i)
n2

=
i

n
+ β

i(n− i)
n2

.

Further, recall that, for each bin i, 1 − γ ≤ 1
πin
≤ 1 + γ, for γ ≤ 1/2. Here we slightly abuse the notation for

πi, since we assumed that bins are sorted in increasing label order, but this does not change the proof since we will
only need to show the lower bound on πi, which holds for every i. We have that for any i, πi ≥ 1

n(1+γ) . Let

Pi =
∑i
j=1 πi ≥

i
n(1+γ) . We get that :

Sc(i) = Pi + (1− Pi)psteal
i

n
= Pi(1− psteal

i

n
) + psteal

i

n

≥ i

(1 + γ)n
(1− psteal

i

n
) + psteal

i

n
.

Thus:

Sc(i)− Sβ(i) ≥ i

(1 + γ)n
− psteal

i2

(1 + γ)n2
− (1− psteal)

i

n
− β i(n− i)

n2
.

Hence, to complete the proof we need to show that

β ≤
(i

(1 + γ)n
− psteal

i2

(1 + γ)n2
− (1− psteal)

i

n

) n2

i(n− i)

=
n

(n− i)

(1

1 + γ
− (1− psteal)− psteal

i

(1 + γ)n

)
. (6)

Recall that 1 ≤ i ≤ n is an integer and for i = n, Sc(i) = Sβ(i) = 1. Thus, we need to show that (6) holds for

1 ≤ i ≤ n− 1. Next, we can prove that n
(n−i)

(
1

1+γ − (1− psteal)− psteal i
(1+γ)n

)
is minimized for i = n− 1. Thus,

after plugging i = n− 1 in (6), we need to show that

β ≤ n
(1

1 + γ
− (1− psteal)− psteal

(n− 1)

(1 + γ)n

)
= psteal

n

1 + γ

(
1

n
− γ
(1

psteal
− 1
))

.

We can now set γ
(

1
psteal
− 1
)
≤ 1

2n and β = psteal
2(1+γ) , and the above inequality holds. This completes the proof of the

lemma.

We can now show that the potential bound (3) holds. Formally:

16

Lemma 3. Fix any time step t and labels x1(t), x2(t), ..., xn(t). Let γ
(

1
psteal

− 1
)
≤ 1

2n and β = psteal
2(1+γ) . Also, let

wt be the random weight which we use to generate new labels for both continuous and 1 + β processes. Then:

E[Γc(t+ 1)− Γβ(t+ 1)|x1(t), x2(t), ..., xn(t), wt] ≤ 0. (7)

Proof. To show the proof of the lemma we use the coupling similar to the one used in [21], Theorem 3.1. We again
assume that bins are sorted in the increasing label order. The coupling works as follows: At step t we pick probability
0 ≤ p < 1 uniformly at random, for our continuous process we delete label from bin i, such that Sc(i−1) ≤ p < Sc(i)
(we assume that Sc(0) = 0) and for 1 + β process we delete label from bin j, if Sβ(j − 1) ≤ p < Sβ(j). We set
xc,i(t + 1) = xi(t) + wt/n and xβ,j(t + 1) = xj(t) + wt/n. Here xc,i(t + 1) and xβ,j(t + 1) are new normalized
labels on top of bins i and j for our continuous and 1 + β processes correspondingly (The rest of the labels do not
change). It is straightforward to verify that coupling is valid, since Sc(i) − Sc(i − 1) is exactly the probability of
deleting label from bin i in our continuous process (the same thing is valid for 1 + β process). We would like to note
the we are not able to use Theorem 3.1 in [21] directly since it assumes that wt = 1. Lemma 2 gives us that i ≤ j, and
hence xi(t) ≤ xj(t) Recall that µ(t) = 1

n

∑n
k=1 xk(t), for both processes µ(t+ 1) = µ(t) +wt/n

2. and for k 6= i, j,
xk(t + 1) = xk(t), hence to prove that potential at step t is smaller for continuous process we just need to check at
how new labels of bins i and j effect potentials.

First we show that

eα(xi(t)+wt/n−wt/n
2−µ(t)) + eα(xj(t)−wt/n

2−µ(t)) ≤ eα(xi(t)−wt/n
2−µ(t)) + eα(xj(t)+wt−wt/n

2−µ(t)).

which after diving both sides by eα(−wt/n
2−µ(t)) ≥ 0 is the same as

eα(xi(t)+wt/n) + eα(xj(t)) ≤ eα(xi(t)) + eα(xj(t)+wt/n).

After rearranging terms, this can be rewritten as

(eαwt/n − 1)(eα(xj(t)) − eα(xi(t))) ≥ 0.

The above inequality holds since α ≥ 0, wt ≥ 0 and xj(t) ≥ xi(t). Next, we show that

e−α(xi(t)+wt/n−wt/n
2−µ(t)) + e−α(xj(t)−wt/n

2−µ(t)) ≤ e−α(xi(t)−wt/n
2−µ(t)) + e−α(xj(t)+wt−wt/n

2−µ(t)).

which is the same as

e−α(xi(t)+wt/n) + e−α(xj(t)) ≤ e−α(xi(t)) + e−α(xj(t)+wt/n).

Rearranging terms, this can be rewritten as

(e−αwt/n − 1)(e−α(xj(t)) − e−α(xi(t))) ≥ 0.

The above inequality clearly holds since α ≥ 0, wt ≥ 0 and xj(t) ≥ xi(t) (in this case, both terms are negative).

Proof of Theorem 1. Finally, we can prove our main result. First, fix normalized labels on the top of the bins:
x1(t), x2(t), ..., xn(t). Lemma 2 in full version of [5] shows that for any step t ≥ 0:

E[Γβ(t+ 1)|x1(t), x2(t), ..., xn(t)] ≤
(

1− Ω(
β2

n
)
)

Γ(t) + poly(
1

β
). (8)

and Lemma 3 gives us that for β = psteal
2(1+γ)

E[Γc(t+ 1)− Γβ(t+ 1)|x1(t), x2(t), ..., xn(t), wt] ≤ 0.

We remove conditioning on wt and slightly abuse the notation in 1 + β process: we assume that wt is Exp(πi) if
continuous process deletes from bin i, this slightly changes 1 + β process (which might delete from different bin),
but proof of (8) in [5] will still be correct since it only uses that wt = Exp(πi), (To be more precise, the proof uses
expectation and moment generating function of exponential random variable) for 1− γ ≤ 1

πin
≤ 1 + γ, and γ ≤ 1/2

and does not make any assumptions about i. Hence we get that

E[Γc(t+ 1)− Γβ(t+ 1)|x1(t), x2(t), ..., xn(t)] ≤ 0.

17

and this means that

E[Γc(t+ 1)|x1(t), x2(t), ..., xn(t)] ≤
(

1− Ω(
β2

n
)
)

Γ(t) + poly(
1

β
).

Lemma 3 in the full version of [5] proves that for any time step t ≥ 0:

E[Γc(t)] ≤ O
(
poly(

1

β
)n
)
. (9)

Finally, we can use Theorems 4 and 5 in the full version of [5] to show that for the continuous process and time
t ≥ 0, the expected maximum rank of labels on top of bins at time step t is O

(
n
β (log n + log 1

β)
)

and expected

average rank is O
(
n
β log 1

β

)
. This is possible since these theorems only use the upper bound on E[Γ(t)], regardless

of which process we used to derive this bound). Plugging in β = psteal
2(1+γ) in the above rank bounds and using Lemma

1 completes the proof of the theorem for B = 1. We proceed by specifying what will change in the proof if B > 1.
Lemma 1 holds as before. In the continuous process we delete B labels instead of just one. This means that if
continuous process deletes B labels from bin i at step t. We have that `i(t + 1) = `i(t) +

∑B
k=1Exp(πi) (Recall

that `i(t) is a label on top of bin i at step t). Hence, we use a normalized label: xi(t) = `i(t)
Bn . Consider random

variable
∑B
k=1

Exp(πi)
B (this is by how much normalized label on top of bin i increases, if we ignore factor of 1/n).

We have that E
[∑B

k=1
Exp(πi)

B

]
= E

[
Exp(πi)

]
Also, by convexity of exponential function and Jensen’s inequality

we have that the moment generating function of
∑B
k=1Exp(πi)/B is upper bounded by moment generating function

of Exp(πi) (This is important since the proof of (8) in [5] uses moment generating function). This means that we
can apply all the steps of the proof exactly as in the case of B = 1. The only difference will be last step, where we
scale back by 1/nB instead of 1/n. Hence bounds on expected maximum rank and expected average rank become
O
(
nB
β (log n+ log 1

β)
)

and O
(
nB
β log 1

β

)
.

18

B Tuning OBIM and PMOD Schedulers

Figure 3: Ablation of ∆ and CHUNK_SIZE parameters for OBIM. Experiments execute on 256 threads on the AMD
platform. The baseline is the classic Multi-Queue on 256 threads with C = 4. The fastest configuration for each
benchmark is highlighted with a black border. Best viewed in color.

Figure 4: Ablation of ∆ and CHUNK_SIZE parameters for PMOD. Experiments execute on 256 threads on the AMD
platform. The baseline is the classic Multi-Queue on 256 threads with C = 4. The fastest configuration for each
benchmark is highlighted with a black border. Best viewed in color.

19

Figure 5: Ablation of ∆ and CHUNK_SIZE parameters for OBIM. Experiments execute on 128 threads on the Intel
platform. The baseline is the classic Multi-Queue on 128 threads with C = 4. The fastest configuration for each
benchmark is highlighted with a black border. Best viewed in color.

Figure 6: Ablation of ∆ and CHUNK_SIZE parameters for PMOD. Experiments execute on 128 threads on the Intel
platform. The baseline is the classic Multi-Queue on 128 threads with C = 4. The fastest configuration for each
benchmark is highlighted with a black border. Best viewed in color.

20

C Classic Multi-Queue Optimizations

Usually, Multi-Queues use C × T sequential queues under the hood, where T is the number of threads and C is
some constant between 2 and 8. We consider different C values to find the best one, and present the corresponding
experimental data in Tables 2–3.

After that, we evaluate the task batching and temporal locality optimizations in Subsection 2.1. In short, task batching
reduces the ratio between synchronization cost and task execution time by retrieving multiple tasks from the same
queue at once in delete() and buffering them in insert(..). The temporal locality optimization reduces the cache
coherence overhead by using the same queue for a sequence of delete() or insert(..) operations, changing the
“temporally local” queue with a constant probability. We evaluate all the four combinations of these optimizations,
and present the corresponding results in Figures 7–14. In addition, we compare the optimally configured combinations
— the results are presented in Figures 15–16. All the experiments are executed on both AMD and Intel platforms.

2 3 4 5 6 7 8
BFS USA 17.18 21.33 23.41 25.76 27.28 28.27 27.44

BFS WEST 17.64 20.31 20.69 22.05 23.10 23.65 23.77
BFS TWI 30.20 30.06 29.28 27.81 29.09 28.98 28.29

BFS WEB 15.95 16.41 17.65 18.03 18.06 18.46 18.42

SSSP USA 17.83 18.26 17.53 18.10 17.35 16.95 16.34

SSSP WEST 13.18 13.80 13.52 12.67 11.40 11.74 11.29

SSSP TWI 27.01 26.86 26.51 24.98 24.14 25.11 25.03

SSSP WEB 26.70 26.70 27.30 26.91 28.93 29.15 29.15
MST USA 13.04 11.97 12.55 11.46 12.71 13.25 12.87

MST WEST 7.63 7.38 7.73 7.73 7.87 7.22 7.40

A* USA 23.47 24.74 26.27 26.12 25.57 24.79 23.96

A* WEST 18.01 19.52 18.78 18.31 17.57 16.64 16.06

Table 2: Speedup of the classic Multi-Queue with various C executed on 256 threads on the AMD platform. The
baseline is sequential priority queue execution on a single thread. The best speedups are highlighted with red.

2 3 4 5 6 7 8
BFS USA 9.45 11.65 12.70 13.49 13.74 13.77 13.77

BFS WEST 9.35 11.00 12.19 12.76 13.01 12.95 13.60
BFS TWI 29.00 29.04 28.62 26.81 29.12 28.99 27.91

BFS WEB 12.32 13.05 13.52 13.94 13.91 14.88 15.03
SSSP USA 10.40 12.68 13.49 13.53 13.35 13.04 13.19

SSSP WEST 9.45 9.85 10.96 10.83 10.53 10.04 9.74

SSSP TWI 27.30 26.98 27.64 27.30 26.36 26.30 26.90

SSSP WEB 23.65 24.58 25.17 25.22 23.79 26.13 26.51
MST USA 4.50 4.73 4.66 4.44 4.58 4.73 4.86

MST WEST 4.78 4.66 4.80 4.46 4.59 4.33 4.75

A* USA 14.64 17.42 17.73 18.31 18.71 18.58 18.44

A* WEST 12.29 14.10 14.55 14.59 14.25 14.01 13.60

Table 3: Speedup of the classic Multi-Queue with various C executed on 128 threads on the Intel platform. The
baseline is sequential priority queue execution on a single thread. The best speedups are highlighted with red.

21

C.1 Classic Multi-Queue Optimizations on AMD: insert=Temporal Locality, delete=Temporal Locality

Figure 7: Ablation of queue change probabilities (Temporal Locality) for both insert(..) and delete(). Experi-
ments execute on 256 threads on the AMD platform. The baseline is the classic Multi-Queue on 256 threads with C =
4. The fastest configuration for each benchmark is highlighted with a black border and listed in Table 4.

SSSP USA SSSP WEST SSSP TWITTER SSSP WEB BFS USA BFS WEST
pinsert 1/1 1/1 1/512 1/1024 1/4 1/4

pdelete 1/2 1/1 1/1024 1/1024 1/512 1/512

Speedup 0.98 0.91 1.32 1.67 1.56 1.29

Work Increase 1.24 1.04 1.07 1.31 1.07 1.07

BFS TWITTER BFS WEB A* USA A* WEST MST USA MST WEST
pinsert 1/16 1/64 1/1 1/1 1/1024 1/2

pdelete 1/1024 1/128 1/2 1/1 1/16 1/16

Speedup 1.19 2.09 0.91 0.92 1.19 1.01

Work Increase 1.03 1.01 1.19 1.03 1.00 1.00

Table 4: The optimal parameters for Multi-Queue with the temporal locality optimization for both insert(..) and
delete() obtained on the AMD platform. Based on Figure 7. For each benchmark, the best parameters are presented
with the speedup and work increase.

22

C.2 Classic Multi-Queue Optimizations on Intel: insert=Temporal Locality, delete=Temporal Locality

Figure 8: Ablation of queue change probabilities (Temporal Locality) for both insert(..) and delete(). Experi-
ments execute on 128 threads on the Intel platform. The baseline is the classic Multi-Queue on 128 threads with C =
4. The fastest configuration for each benchmark is highlighted with a black border and listed in Table 5.

SSSP USA SSSP WEST SSSP TWITTER SSSP WEB BFS USA BFS WEST
pinsert 1/1 1/1 1/512 1/1024 1/8 1/4

pdelete 1/2 1/1 1/256 1/1024 1/512 1/256

Speedup 1.05 0.97 1.73 2.18 1.88 1.50

Work Increase 1.15 1.04 1.01 1.15 1.06 1.07

BFS TWITTER BFS WEB A* USA A* WEST MST USA MST WEST
pinsert 1/1024 1/1024 1/2 1/1 1/512 1/1024

pdelete 1/64 1/256 1/2 1/1 1/16 1/4

Speedup 1.60 3.44 1.06 0.98 1.20 1.16

Work Increase 1.09 1.02 1.11 1.02 1.00 1.01

Table 5: The optimal parameters for Multi-Queue with the temporal locality optimization for both insert(..) and
delete() obtained on the Intel platform. Based on Figure 8. For each benchmark, the best parameters are presented
with the speedup and work increase.

23

C.3 Classic Multi-Queue Optimizations on AMD: insert=Temporal Locality, delete=Task Batching

Figure 9: Ablation of queue change probability (Temporal Locality) for insert(..) and batch size for delete().
Experiments execute on 256 threads on the AMD platform. The baseline is the classic Multi-Queue on 256 threads
with C = 4. The fastest configuration for each benchmark is highlighted with a black border and listed in Table 6.

SSSP USA SSSP WEST SSSP TWITTER SSSP WEB BFS USA BFS WEST
pinsert 1/1 1/1 1/1024 1/1024 1/256 1/512

BATCHdelete 2 2 512 1024 64 256

Speedup 1.09 0.90 1.25 1.53 2.03 1.65

Work Increase 1.28 1.35 1.10 1.40 1.08 1.08

BFS TWITTER BFS WEB A* USA A* WEST MST USA MST WEST
pinsert 1/8 1/32 1/1 1/1 1/512 1/4

BATCHdelete 64 128 2 1 16 16

Speedup 1.15 2.15 1.00 0.93 1.20 1.09

Work Increase 1.05 1.01 1.22 1.03 1.00 1.00

Table 6: The optimal parameters for Multi-Queue with the temporal locality optimization for insert(..) and task
batching for delete(), obtained on the AMD platform. Based on Figure 9. For each benchmark, the best parameters
are presented with the speedup and work increase.

24

C.4 Classic Multi-Queue Optimizations on Intel: insert=Temporal Locality, delete=Batching

Figure 10: Ablation of queue change probability (Temporal Locality) for insert(..) and batch size for delete().
Experiments execute on 128 threads on the Intel platform. The baseline is the classic Multi-Queue on 128 threads
with C = 4. The fastest configuration for each benchmark is highlighted with a black border and listed in Table 7.

SSSP USA SSSP WEST SSSP TWITTER SSSP WEB BFS USA BFS WEST
pinsert 1/2 1/2 1/128 1/1024 1/1024 1/256

BATCHdelete 2 2 32 1024 512 1024

Speedup 1.16 1.03 1.76 2.15 2.42 1.93

Work Increase 1.19 1.30 1.02 1.22 1.07 1.08

BFS TWITTER BFS WEB A* USA A* WEST MST USA MST WEST
pinsert 1/1024 1/1024 1/512 1/2 1/256 1/256

BATCHdelete 128 1024 4 2 128 1024

Speedup 1.64 3.47 1.18 1.04 1.20 1.12

Work Increase 1.12 1.04 1.34 1.21 1.00 1.00

Table 7: The optimal parameters for Multi-Queue with the temporal locality optimization for insert(..) and task
batching for delete(), obtained on Intel. Based on Figure 10. For each benchmark, the best parameters are presented
with the speedup and work increase.

25

C.5 Classic Multi-Queue Optimizations on AMD: insert=Batching, delete=Temporal Locality

Figure 11: Ablation of batch size (B) for insert(..) and queue change probability (TL) for delete(). Experiments
execute on 256 threads on the AMD platform. The baseline is the classic Multi-Queue on 256 threads with C = 4. The
fastest configuration for each benchmark is highlighted with a black border. Best viewed in color.

SSSP USA SSSP WEST SSSP TWITTER SSSP WEB BFS USA BFS WEST
BATCHinsert 128 512 16 1024 8 4

pdelete 1/1024 1/512 1/1024 1/256 1/1024 1/32

Speedup 1.11 0.91 1.27 1.64 1.66 1.38

Work Increase 3.06 2.60 1.02 1.13 1.08 1.07

BFS TWITTER BFS WEB A* USA A* WEST MST USA MST WEST
BATCHinsert 8 32 1024 1 64 16

pdelete 1/1024 1/512 1/512 1/1 1/128 1/128

Speedup 1.18 2.13 0.95 0.94 1.19 1.10

Work Increase 1.02 1.02 2.38 1.00 1.00 1.00

Table 8: The optimal parameters for Multi-Queue with the task batching optimization for insert(..) and temporal
localityfor delete(), obtained on the AMD platform. Based on Figure 11. For each benchmark, the best parameters
are presented with the speedup and work increase.

26

C.6 Classic Multi-Queue Optimizations on Intel: insert=Batching, delete=Temporal Locality

Figure 12: Intel. Ablation of batch size (B) for insert(..) and queue change probability (TL) for delete().
Experiments execute on 128 threads. The baseline is the classic Multi-Queue on 128 threads with C = 4. The fastest
configuration for each benchmark is highlighted with a black border. Best viewed in color.

SSSP USA SSSP WEST SSSP TWITTER SSSP WEB BFS USA BFS WEST
BATCHinsert 256 256 1024 1024 8 8

pdelete 1/512 1/512 1/64 1/1024 1/1024 1/128

Speedup 1.34 1.16 2.00 2.19 1.95 1.58

Work Increase 2.47 2.80 1.02 1.21 1.08 1.09

BFS TWITTER BFS WEB A* USA A* WEST MST USA MST WEST
BATCHinsert 512 1024 256 256 1024 512

pdelete 1/128 1/1024 1/512 1/256 1/256 1/256

Speedup 1.60 3.23 1.22 1.03 1.27 1.24

Work Increase 1.05 1.05 2.28 2.13 1.00 1.00

Table 9: The optimal parameters for Multi-Queue with the task batching optimization for insert(..) and
emphtemporal localityfor delete(), obtained on the Intel platform. Based on Figure 12. For each benchmark, the
best parameters are presented with the speedup and work increase.

27

C.7 Classic Multi-Queue Optimizations on AMD: insert=Batching, delete=Batching

Figure 13: Ablation of batch sizes (B) for insert(..) and delete(). Experiments execute on 256 threads on the
AMD platform. The baseline is the classic Multi-Queue on 256 threads with C = 4. The fastest configuration for each
benchmark is highlighted with a black border. Best viewed in color.

SSSP USA SSSP WEST SSSP TWITTER SSSP WEB BFS USA BFS WEST
BATCHinsert 2 1 1024 64 16 16

BATCHdelete 2 1 512 256 8 8

Speedup 1.08 0.97 1.25 1.44 2.09 1.71

Work Increase 1.33 1.00 1.12 1.15 1.11 1.29

BFS TWITTER BFS WEB A* USA A* WEST MST USA MST WEST
BATCHinsert 16 64 2 1 1024 4

BATCHdelete 256 128 2 1 128 8

Speedup 1.15 2.21 1.02 1.00 1.19 1.07

Work Increase 1.06 1.01 1.27 1.00 1.00 1.00

Table 10: The optimal parameters for Multi-Queue with the task batching optimization for both insert(..) and
delete(), obtained on the AMD platform. Based on Figure 13. For each benchmark, the best parameters are presented
with the speedup and work increase.

28

C.8 Classic Multi-Queue Optimizations on Intel: insert=Batching, delete=Batching

Figure 14: Ablation of batch sizes (B) for insert(..) and delete(). Experiments execute on 128 threads on Intel.
The baseline is the classic Multi-Queue on 128 threads with C = 4. The fastest configuration for each benchmark is
highlighted with a black border. Best viewed in color.

SSSP USA SSSP WEST SSSP TWITTER SSSP WEB BFS USA BFS WEST
BATCHinsert 4 2 1024 1024 64 32

BATCHdelete 4 1 512 1024 16 16

Speedup 1.19 1.00 1.71 2.07 2.58 1.96

Work Increase 1.55 1.08 1.09 1.23 1.22 1.30

BFS TWITTER BFS WEB A* USA A* WEST MST USA MST WEST
BATCHinsert 1024 512 4 4 1024 1024

BATCHdelete 256 1024 4 2 512 512

Speedup 1.63 3.58 1.19 1.00 1.26 1.23

Work Increase 1.08 1.02 1.40 1.33 1.00 1.00

Table 11: The optimal parameters for Multi-Queue with the task batching optimization for both insert(..) and
delete(), obtained on Intel. Based on Figure 14. For each benchmark, the best parameters are presented with the
speedup and work increase.

29

C.9 Comparison of Task Batching and Temporal Locality Optimizations

Figure 15: A comparison of task batching (B) and temporal locality (TL) optimizations on the classic Multi-Queue on
the AMD platform.

Figure 16: Intel. A comparison of task batching (B) and temporal locality (TL) optimizations on the classic Multi-
Queue.

30

D Stealing Multi-Queue Implementation Details

This section presents the experimental data for the proposed Stealing Multi-Queue (SMQ) algorithm. Figures 17–18
and Tables 12–13 show results for the version with sequential d-ary heaps and stealing buffers, while Figures 19–20
and Tables 14–15 show results for the Skip-List based version.

D.1 SMQ via D-Ary Heaps on AMD

Figure 17: Ablation of stealing probability psteal and steal buffer size on the AMD architecture, for SMQ implemented
using d-ary heaps. Experiments execute on 256 threads. The baseline is the classic Multi-Queue on 256 threads with
C = 4. The fastest configuration for each benchmark is highlighted with a black border and listed in Table 12. Best
viewed in color.

SSSP USA SSSP W SSSP TWITTER SSSP WEB BFS USA BFS W
psteal 1/4 1/4 1/16 1/16 1/4 1/4

CHUNK_SIZE 1 1 64 8 1 1

Speedup 2.28 2.00 2.01 2.92 2.87 2.33

Work Increase 1.18 1.20 1.03 1.11 1.05 1.12

BFS TWITTER BFS WEB A* USA A* W MST USA MST W
psteal 1/8 1/32 1/8 1/4 1/32 1/64

CHUNK_SIZE 32 32 2 1 64 64

Speedup 1.30 2.54 1.83 1.82 2.13 1.28

Work Increase 1.33 1.09 1.35 1.23 1.00 1.00

Table 12: The optimal parameters for Stealing Multi-Queue via d-ary heaps on 256 threads, obtained on the AMD
platform. Based on Figure 17. For each benchmark, the best parameters are presented with the speedup and work
increase.

31

D.2 SMQ via D-Ary Heaps on Intel

Figure 18: Ablation of stealing probability psteal and steal buffer size on Intel, for SMQ implemented using d-ary
heaps. Experiments execute on 128 threads. The baseline is the classic Multi-Queue on 128 threads with C = 4. The
fastest configuration for each benchmark is highlighted with a black border and listed in Table 13. Best viewed in
color.

SSSP USA SSSP W SSSP TWITTER SSSP WEB BFS USA BFS W
psteal 1/8 1/8 1/4 1/32 1/16 1/16

CHUNK_SIZE 2 2 16 16 4 4

Speedup 2.47 2.15 1.92 2.46 3.41 2.82

Work Increase 1.23 1.38 1.01 1.06 1.06 1.17

BFS TWITTER BFS WEB A* USA A* W MST USA MST W
psteal 1/4 1/32 1/8 1/8 1/256 1/2

CHUNK_SIZE 16 16 2 2 512 16

Speedup 1.44 2.86 1.95 1.85 1.48 1.39

Work Increase 1.20 1.10 1.24 1.33 1.00 1.00

Table 13: The optimal parameters of SMQ via d-ary heaps on Intel, based on Figure 18. For each benchmark, the best
psteal and steal buffer size combination is presented, with its speedup and work increase.

32

D.3 SMQ via Skip Lists on AMD

Figure 19: Ablation of stealing probability psteal and steal buffer size on the AMD architecture, for SMQ implemented
using skip-lists. Experiments execute on 256 threads. The baseline is the classic Multi-Queue on 256 threads with C =
4. The fastest configuration for each benchmark is highlighted with a black border and listed in Table 14. Best viewed
in color.

SSSP USA SSSP W SSSP TWITTER SSSP WEB BFS USA BFS W
psteal 1/8 1/4 1/32 1/16 1/16 1/8

CHUNK_SIZE 2 1 64 16 2 2

Speedup 1.59 1.51 1.74 3.21 1.87 1.68

Work Increase 1.13 1.00 1.03 1.01 1.21 1.13

BFS TWITTER BFS WEB A* USA A* W MST USA MST W
psteal 1/8 1/16 1/8 1/4 1/1 1/4

CHUNK_SIZE 32 8 2 1 1 8

Speedup 0.88 2.99 1.44 1.42 1.52 1.34

Work Increase 1.14 1.04 1.14 1.04 1.01 1.00

Table 14: The optimal parameters of SMQ via skip lists on the AMD architecture, based on Figure 17. For each
benchmark, the best psteal and steal buffer size combination is presented, with its speedup and work increase.

33

D.4 SMQ via Skip Lists on Intel

Figure 20: Ablation of stealing probability psteal and steal buffer size on Intel, for SMQ implemented using skip-lists.
Experiments execute on 128 threads. The baseline is the classic Multi-Queue on 128 threads with C = 4. The fastest
configuration for each benchmark is highlighted with a black border and listed in Table 15. Best viewed in color.

SSSP USA SSSP W SSSP TWITTER SSSP WEB BFS USA BFS W
psteal 1/16 1/8 1/32 1/128 1/32 1/16

CHUNK_SIZE 2 1 64 64 4 2

Speedup 1.53 1.42 1.64 2.20 1.85 1.64

Work Increase 1.28 1.30 1.01 1.02 1.12 1.18

BFS TWITTER BFS WEB A* USA A* W MST USA MST W
psteal 1/32 1/16 1/16 1/8 1/4 1/8

CHUNK_SIZE 64 8 2 2 2 8

Speedup 1.10 2.84 1.49 1.33 1.43 1.42

Work Increase 1.21 1.02 1.25 1.14 1.01 1.00

Table 15: The optimal parameters of SMQ via skip lists on the Intel architecture, based on Figure 20. For each
benchmark, the best psteal and steal buffer size combination is presented, with its speedup and work increase.

34

E NUMA Awareness

In this section we examine how the proposed in Section 4 optimization for NUMA architectures improves both the
Multi-Queue variants (Tables 16–23) and the proposed Stealing Multi-Queue (SMQ) via both d-ary heaps (Tables 24–
25) and Skip-Lists (Tables 26–27).

E.1 MQ Optimized NUMA: insert=Temporal Locality, delete=Temporal Locality

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 1.44 1.56 1.65 1.70 1.73 1.75 1.75 1.73 1.64 1.54 1.36

BFS WEST 1.21 1.30 1.37 1.41 1.40 1.48 1.48 1.47 1.41 1.32 1.20

BFS TWITTER 1.14 1.10 1.12 1.11 1.04 0.97 0.91 0.88 0.82 0.80 0.78

BFS WEB 2.22 2.32 2.38 2.03 1.97 1.67 1.52 1.55 1.43 1.44 1.45

SSSP USA 1.00 1.03 1.10 1.12 1.16 1.19 1.19 1.20 1.20 1.20 1.15

SSSP WEST 0.95 0.98 0.99 1.05 1.08 1.09 1.12 1.14 1.09 1.06 1.08

SSSP TWITTER 1.30 1.27 1.35 1.28 1.23 1.27 1.27 1.27 1.33 1.23 1.33

SSSP WEB 1.68 1.77 1.78 1.86 1.78 1.67 1.60 1.55 1.44 1.55 1.58

MST USA 0.43 1.06 1.15 1.00 0.98 0.79 0.59 0.69 0.40 0.47 0.73

MST WEST 1.16 1.12 1.06 1.12 1.12 1.13 1.13 1.14 1.14 1.15 1.09

A* USA 0.95 1.00 1.05 1.09 1.12 1.12 1.13 1.15 1.13 1.11 1.11

A* WEST 0.94 1.02 1.06 1.08 1.11 1.13 1.17 1.16 1.17 1.14 1.11

Table 16: Speedups for Multi-Queue variants with the temporal locality optimization for both insert(..) and
delete(), and various weightsK for non-local NUMA node accesses, obtained on the AMD platform on 256 threads;
the best speedups are highlighted with red. The baseline is the classic Multi-Queue on 256 threads with C = 4. With
K = 1 the algorithm is the same as without the NUMA-specific optimization.

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 1.58 1.79 2.09 2.37 2.64 2.84 2.97 2.86 2.72 2.49 1.99

BFS WEST 1.28 1.45 1.68 1.94 2.16 2.37 2.43 2.40 2.17 2.02 1.68

BFS TWITTER 1.58 1.58 1.39 1.36 1.21 1.05 0.99 0.78 0.73 0.64 0.68

BFS WEB 3.11 3.32 3.69 3.23 2.62 2.14 1.81 1.56 1.53 1.31 1.26

SSSP USA 0.92 0.99 1.12 1.28 1.44 1.58 1.68 1.74 1.78 1.77 1.72

SSSP WEST 0.88 0.92 1.02 1.17 1.32 1.46 1.56 1.61 1.65 1.62 1.54

SSSP TWITTER 1.77 1.90 1.96 1.96 1.63 1.74 1.74 1.72 1.74 1.67 1.66

SSSP WEB 2.11 2.30 2.34 2.25 1.90 1.62 1.38 1.18 1.09 1.00 0.95

MST USA 1.02 1.11 1.22 1.28 1.28 1.28 1.22 1.20 1.22 1.22 1.18

MST WEST 1.16 1.17 1.20 1.10 1.12 1.24 1.31 1.28 1.28 1.21 1.13

A* USA 0.99 1.06 1.19 1.34 1.49 1.60 1.69 1.75 1.76 1.75 1.69

A* WEST 0.93 0.97 1.07 1.22 1.36 1.48 1.58 1.63 1.65 1.64 1.58

Table 17: Speedups for Multi-Queue variants with the temporal locality optimization for both insert(..) and
delete()„ and various weightsK for non-local NUMA node accesses, obtained on the Intel platform on 128 threads;
the best speedups are highlighted with red. The baseline is the classic Multi-Queue on 128 threads with C = 4. With
K = 1 the algorithm is the same as without the NUMA-specific optimization.

35

E.2 MQ Optimized NUMA: insert=Temporal Locality, delete=Task Batching

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 1.99 2.06 2.04 2.14 2.10 2.16 2.15 2.16 2.18 2.10 2.03

BFS WEST 1.56 1.64 1.67 1.71 1.70 1.72 1.73 1.76 1.72 1.68 1.60

BFS TWITTER 1.15 1.15 1.17 1.16 1.13 1.11 1.10 1.07 1.05 1.00 0.95

BFS WEB 2.21 2.23 2.27 2.33 2.38 2.37 2.11 2.01 1.77 1.78 1.62

SSSP USA 1.05 1.13 1.18 1.20 1.26 1.28 1.29 1.29 1.31 1.30 1.27

SSSP WEST 0.88 0.95 1.00 1.04 1.05 1.07 1.07 1.08 1.10 1.09 1.07

SSSP TWITTER 1.16 1.26 1.22 1.32 1.29 1.29 1.25 1.33 1.28 1.33 1.26

SSSP WEB 1.58 1.56 1.68 1.71 1.72 1.81 1.70 1.55 1.62 1.62 1.54

MST USA 1.13 1.15 1.20 1.12 1.18 1.17 1.12 0.89 0.69 0.61 0.43

MST WEST 1.17 1.14 1.13 1.13 1.13 1.13 1.12 1.14 1.13 1.14 1.13

A* USA 0.97 1.07 1.10 1.15 1.18 1.17 1.21 1.22 1.22 1.19 1.20

A* WEST 0.98 0.97 1.06 1.05 1.13 1.16 1.16 1.19 1.17 1.11 1.12

Table 18: Speedups for Multi-Queue variants with the temporal locality optimization for insert(..), task batching
for delete(), and various weights K for non-local NUMA node accesses, obtained on the AMD platform on 256
threads; the best speedups are highlighted with red. The baseline is the classic Multi-Queue on 256 threads with C =
4. With K = 1 the algorithm is the same as without the NUMA-specific optimization.

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 2.22 2.37 2.58 2.75 2.93 3.08 3.22 3.37 3.35 3.28 3.15

BFS WEST 1.79 1.93 2.11 2.32 2.47 2.64 2.77 2.84 2.86 2.78 2.67

BFS TWITTER 1.69 1.55 1.69 1.62 1.55 1.54 1.50 1.42 1.35 1.32 1.28

BFS WEB 3.47 3.60 3.65 3.68 3.61 3.44 3.62 3.13 2.64 2.69 2.66

SSSP USA 1.07 1.14 1.25 1.39 1.52 1.66 1.76 1.84 1.89 1.90 1.89

SSSP WEST 0.95 1.01 1.11 1.23 1.36 1.47 1.55 1.62 1.66 1.66 1.63

SSSP TWITTER 1.56 1.61 1.80 1.82 1.93 1.87 1.96 1.83 1.74 1.69 1.71

SSSP WEB 2.19 2.21 2.32 2.30 2.45 2.53 2.48 2.10 1.91 1.78 1.67

MST USA 1.15 1.21 1.22 1.25 1.23 1.27 1.30 1.23 1.20 1.08 1.09

MST WEST 1.20 1.19 1.26 1.27 1.24 1.30 1.28 1.31 1.30 1.10 1.27

A* USA 1.18 1.24 1.32 1.43 1.55 1.62 1.70 1.74 1.79 1.79 1.78

A* WEST 1.02 1.07 1.16 1.28 1.41 1.50 1.59 1.64 1.68 1.67 1.65

Table 19: Speedups for Multi-Queue variants with the temporal locality optimization for insert(..), task batching
for delete(), and various weights K for non-local NUMA node accesses, obtained on the Intel platform on 128
threads; the best speedups are highlighted with red. The baseline is the classic Multi-Queue on 128 threads with C =
4. With K = 1 the algorithm is the same as without the NUMA-specific optimization.

36

E.3 MQ Optimized NUMA: insert=Task Batching, delete=Temporal Locality

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 1.52 1.58 1.70 1.78 1.74 1.84 1.85 1.86 1.81 1.81 1.77

BFS WEST 1.23 1.28 1.33 1.43 1.40 1.46 1.51 1.49 1.47 1.47 1.39

BFS TWITTER 1.13 1.18 1.18 1.11 1.11 1.06 1.00 0.93 0.86 0.83 0.80

BFS WEB 2.03 2.09 2.25 2.36 2.08 1.85 1.76 1.57 1.53 1.43 1.44

SSSP USA 0.99 1.00 0.97 0.90 0.95 0.95 0.97 1.00 0.85 0.94 0.97

SSSP WEST 0.81 0.82 0.79 0.74 0.81 0.85 0.81 0.80 0.84 0.81 0.78

SSSP TWITTER 1.18 1.27 1.33 1.31 1.26 1.25 1.30 1.28 1.25 1.26 1.37
SSSP WEB 1.53 1.59 1.72 1.80 1.87 1.85 1.79 1.50 1.52 1.45 1.45

MST USA 1.16 1.14 1.14 1.05 1.18 1.09 0.95 0.98 0.88 0.89 0.91

MST WEST 1.07 1.06 1.08 1.09 1.11 1.13 1.14 1.18 1.14 1.19 1.18

A* USA 0.89 0.88 0.90 0.88 0.89 0.92 0.91 0.94 0.91 0.91 0.90

A* WEST 0.97 0.99 1.04 1.08 1.10 1.06 1.15 1.11 1.14 1.13 1.11

Table 20: Speedups for Multi-Queue variants with the task batching optimization for insert(..), temporal locality
for delete(), and various weights K for non-local NUMA node accesses, obtained on the AMD platform on 256
threads; the best speedups are highlighted with red. The baseline is the classic Multi-Queue on 256 threads with C =
4. With K = 1 the algorithm is the same as without the NUMA-specific optimization.

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 1.68 1.81 2.01 2.26 2.48 2.66 2.82 2.92 2.95 2.87 2.73

BFS WEST 1.32 1.45 1.63 1.87 2.08 2.26 2.38 2.47 2.42 2.36 2.09

BFS TWITTER 1.54 1.52 1.56 1.45 1.30 1.20 1.10 0.96 0.87 0.74 0.67

BFS WEB 2.93 3.07 3.30 3.46 3.43 2.81 2.38 1.91 1.68 1.42 1.25

SSSP USA 0.68 0.74 0.84 0.98 1.09 1.19 1.25 1.29 1.30 1.27 1.24

SSSP WEST 0.65 0.66 0.78 0.92 1.03 1.12 1.19 1.22 1.23 1.21 1.15

SSSP TWITTER 1.82 1.98 2.06 2.14 2.04 2.00 1.81 1.80 1.83 1.77 1.83

SSSP WEB 2.04 2.18 2.38 2.46 2.61 2.39 2.10 1.70 1.44 1.19 1.07

MST USA 1.18 1.15 1.09 1.17 1.17 1.07 0.81 0.60 0.34 0.11 0.34

MST WEST 0.90 0.98 0.91 0.89 1.06 1.03 0.93 0.95 1.15 1.01 0.92

A* USA 0.77 0.82 0.93 1.05 1.17 1.25 1.32 1.36 1.36 1.34 1.29

A* WEST 0.71 0.75 0.85 0.97 1.08 1.16 1.22 1.26 1.25 1.23 1.15

Table 21: Speedups for Multi-Queue variants with the task batching optimization for insert(..), temporal locality
for delete(), and various weights K for non-local NUMA node accesses, obtained on the Intel platform on 128
threads; the best speedups are highlighted with red. The baseline is the classic Multi-Queue on 128 threads with C =
4. With K = 1 the algorithm is the same as without the NUMA-specific optimization.

37

E.4 MQ Optimized NUMA: insert=Task Batching, delete=Task Batching

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 2.09 2.10 2.15 2.18 2.23 2.26 2.27 2.22 2.25 2.22 2.10

BFS WEST 1.62 1.64 1.66 1.40 1.69 1.70 1.71 1.65 1.75 1.71 1.57

BFS TWITTER 1.15 1.17 1.18 1.16 1.14 1.12 1.06 1.06 1.07 1.05 1.00

BFS WEB 2.27 2.23 2.37 2.44 2.49 2.52 2.52 2.30 2.16 1.98 1.78

SSSP USA 1.10 1.13 1.16 1.20 1.22 1.22 1.25 1.24 1.22 1.26 1.24

SSSP WEST 0.96 0.98 1.02 1.09 1.11 1.16 1.18 1.14 1.12 1.13 1.16

SSSP TWITTER 1.18 1.17 1.27 1.29 1.32 1.21 1.29 1.32 1.27 1.23 1.33
SSSP WEB 1.42 1.43 1.48 1.53 1.59 1.64 1.61 1.59 1.49 1.41 1.39

MST USA 1.15 1.17 1.12 1.16 1.11 1.12 1.14 1.11 1.11 1.07 1.06

MST WEST 1.15 1.15 1.15 1.16 1.15 1.18 1.18 1.18 1.14 1.19 1.19
A* USA 1.05 1.09 1.10 1.13 1.15 1.19 1.20 1.20 1.23 1.19 1.24

A* WEST 0.98 1.03 1.08 1.10 1.14 1.19 1.20 1.21 1.21 1.21 1.18

Table 22: Speedups for Multi-Queue variants with the task batching optimization for both insert(..) and delete(),
and various weights K for non-local NUMA node accesses, obtained on the AMD platform on 256 threads; the best
speedups are highlighted with red. The baseline is the classic Multi-Queue on 256 threads with C = 4. With K = 1
the algorithm is the same as without the NUMA-specific optimization.

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 2.47 2.50 2.63 2.79 2.99 3.16 3.33 3.44 3.42 3.35 3.17

BFS WEST 1.87 1.94 2.04 2.17 2.38 2.51 2.64 2.73 2.56 2.72 2.58

BFS TWITTER 1.64 1.59 1.58 1.62 1.61 1.57 1.50 1.51 1.49 1.41 1.43

BFS WEB 3.49 3.44 3.47 3.61 3.41 3.72 3.44 3.45 3.55 3.33 3.33

SSSP USA 1.13 1.16 1.23 1.33 1.44 1.54 1.64 1.72 1.79 1.85 1.88
SSSP WEST 0.88 0.88 0.98 1.05 1.22 1.26 1.34 1.37 1.32 1.38 1.35

SSSP TWITTER 1.69 1.68 1.67 1.80 1.81 1.91 1.88 1.81 1.72 1.69 1.65

SSSP WEB 2.08 2.10 2.14 2.22 2.34 2.36 2.42 2.26 1.91 1.84 1.62

MST USA 1.00 1.05 1.07 1.13 1.09 1.15 1.10 1.09 1.07 1.00 0.78

MST WEST 1.10 1.03 0.95 1.03 1.13 1.08 1.19 1.13 1.04 1.13 1.09

A* USA 1.19 1.21 1.28 1.37 1.47 1.56 1.64 1.71 1.79 1.82 1.86
A* WEST 0.97 1.00 1.09 1.21 1.23 1.31 1.41 1.45 1.45 1.55 1.52

Table 23: Speedups for Multi-Queue variants with the task batching optimization for both insert(..) and delete(),
and various weights K for non-local NUMA node accesses, obtained on the Intel platform on 128 threads; the best
speedups are highlighted with red. The baseline is the classic Multi-Queue on 128 threads with C = 4. With K = 1
the algorithm is the same as without the NUMA-specific optimization.

38

E.5 SMQ via D-Ary Heaps NUMA

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 2.85 2.87 2.88 2.89 2.88 2.78 2.86 2.87 2.88 2.86 2.88

BFS WEST 2.35 2.38 2.39 2.42 2.37 2.33 2.35 2.38 2.39 2.37 2.41

BFS TWITTER 1.28 1.28 1.29 1.28 1.28 1.30 1.30 1.30 1.30 1.30 1.28

BFS WEB 2.55 2.36 2.59 2.47 2.62 2.56 2.63 2.63 2.54 2.60 2.60

SSSP USA 2.35 2.44 2.43 2.44 2.44 2.41 2.43 2.43 2.40 2.43 2.43

SSSP WEST 2.12 2.10 2.10 2.11 2.12 2.10 2.11 2.10 2.11 2.13 2.11

SSSP TWITTER 2.04 2.01 2.05 1.94 2.02 2.01 1.99 2.05 2.00 2.06 2.02

SSSP WEB 2.63 2.77 2.67 2.74 2.60 2.76 2.86 2.62 2.80 2.78 2.88
MST USA 1.99 1.90 1.94 1.82 1.85 1.96 1.89 1.83 1.95 2.09 1.74

MST WEST 1.26 1.22 1.28 1.27 1.27 1.27 1.30 1.29 1.27 1.31 1.25

A* USA 1.92 1.89 1.90 1.87 1.90 1.89 1.90 1.90 1.91 1.91 1.91

A* WEST 1.92 1.94 1.93 1.87 1.92 1.91 1.90 1.84 1.91 1.92 1.90

Table 24: Speedups for the Stealing Multi-Queue implementation via d-ary heaps with various weights K for non-
local NUMA node accesses, obtained on the AMD platform on 256 threads; the best speedups are highlighted with
red. The baseline is the classic Multi-Queue on 256 threads with C = 4. With K = 1 the algorithm is the same as
without the NUMA-specific optimization.

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 3.27 3.28 3.27 3.19 3.27 3.28 3.27 3.26 3.27 3.27 3.27

BFS WEST 2.72 2.72 2.71 2.71 2.72 2.71 2.71 2.70 2.71 2.71 2.71

BFS TWITTER 1.50 1.48 1.46 1.50 1.51 1.51 1.46 1.46 1.49 1.47 1.49

BFS WEB 2.85 2.78 3.04 2.99 2.90 2.67 2.97 2.68 3.00 2.94 3.08
SSSP USA 2.35 2.35 2.34 2.35 2.35 2.35 2.34 2.35 2.35 2.35 2.34

SSSP WEST 2.02 2.03 2.03 2.03 2.01 2.01 2.01 2.03 2.01 2.02 2.01

SSSP TWITTER 1.92 1.86 1.92 1.93 1.72 1.89 1.86 1.90 1.78 1.91 1.83

SSSP WEB 2.43 2.37 2.33 2.46 2.47 2.40 2.29 2.44 2.44 2.42 2.30

MST USA 1.24 1.27 1.20 1.25 1.31 1.11 1.28 1.25 1.28 1.18 1.22

MST WEST 1.21 1.21 1.25 1.27 1.21 1.22 1.19 1.26 1.28 1.27 1.24

A* USA 2.14 2.15 2.16 2.17 2.15 2.16 2.16 2.16 2.15 2.16 2.16

A* WEST 1.90 1.91 1.91 1.91 1.91 1.92 1.90 1.90 1.90 1.92 1.92

Table 25: Speedups for the Stealing Multi-Queue implementation via d-ary heaps with various weights K for non-
local NUMA node accesses, obtained on the Intel platform on 128 threads; the best speedups are highlighted with
red. The baseline is the classic Multi-Queue on 128 threads with C = 4. With K = 1 the algorithm is the same as
without the NUMA-specific optimization.

39

E.6 SMQ via Skip Lists NUMA

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 1.80 1.72 1.81 1.82 1.83 1.80 1.82 1.81 1.81 1.82 1.80

BFS WEST 1.55 1.60 1.42 1.61 1.60 1.60 1.58 1.60 1.62 1.52 1.60

BFS TWITTER 0.94 0.91 0.94 0.83 0.93 0.95 0.86 0.97 0.87 0.75 0.97
BFS WEB 3.24 3.17 2.66 3.08 2.81 3.15 2.96 3.06 2.48 3.12 2.72

SSSP USA 1.68 1.73 1.68 1.72 1.66 1.66 1.71 1.72 1.71 1.70 1.71

SSSP WEST 1.52 1.54 1.53 1.55 1.55 1.53 1.54 1.56 1.55 1.56 1.55

SSSP TWITTER 1.87 1.89 1.99 1.70 1.77 1.69 1.85 1.64 1.78 1.63 1.78

SSSP WEB 3.28 3.25 3.13 3.18 3.29 3.23 3.20 3.19 3.15 3.20 3.20

MST USA 1.42 1.40 1.45 1.46 1.44 1.46 1.44 1.29 1.45 1.44 1.45

MST WEST 1.22 1.32 1.32 1.31 1.31 1.27 1.20 1.25 1.25 1.18 1.23

A* USA 1.49 1.50 1.50 1.51 1.50 1.50 1.50 1.50 1.49 1.50 1.50

A* WEST 1.47 1.47 1.46 1.47 1.45 1.47 1.41 1.47 1.47 1.47 1.47

Table 26: Speedups for the Stealing Multi-Queue implementation via skip lists with various weights K for non-local
NUMA node accesses, obtained on the AMD platform on 256 threads; the best speedups are highlighted with red.
The baseline is the classic Multi-Queue on 256 threads with C = 4. With K = 1 the algorithm is the same as without
the NUMA-specific optimization.

1 2 4 8 16 32 64 128 256 512 1024
BFS USA 1.83 1.85 1.84 1.84 1.83 1.84 1.84 1.85 1.86 1.85 1.84

BFS WEST 1.62 1.62 1.63 1.63 1.64 1.65 1.65 1.65 1.65 1.65 1.65
BFS TWITTER 0.99 0.95 1.03 1.07 0.97 1.03 1.00 1.02 1.06 0.98 1.06

BFS WEB 2.84 2.35 2.67 2.84 2.82 2.79 2.80 2.68 2.83 2.68 2.65

SSSP USA 1.47 1.47 1.47 1.48 1.47 1.48 1.48 1.48 1.48 1.48 1.48
SSSP WEST 1.35 1.33 1.36 1.36 1.36 1.36 1.37 1.36 1.36 1.37 1.37

SSSP TWITTER 1.66 1.65 1.65 1.64 1.65 1.67 1.65 1.66 1.66 1.67 1.65

SSSP WEB 2.19 2.19 2.21 2.21 2.20 2.19 2.20 2.21 2.19 2.23 2.20

MST USA 1.34 1.33 1.29 1.29 1.30 1.29 1.32 1.36 1.28 1.38 1.28

MST WEST 1.41 1.47 1.48 1.40 1.46 1.48 1.47 1.38 1.48 1.45 1.48
A* USA 1.47 1.47 1.48 1.47 1.47 1.48 1.47 1.48 1.47 1.47 1.48

A* WEST 1.31 1.33 1.33 1.32 1.33 1.33 1.33 1.33 1.33 1.33 1.33

Table 27: Speedups for the Stealing Multi-Queue implementation via skip lists with various weights K for non-local
NUMA node accesses, obtained on the Intel platform on 128 threads; the best speedups are highlighted with red. The
baseline is the classic Multi-Queue on 128 threads with C = 4. With K = 1 the algorithm is the same as without the
NUMA-specific optimization.

40

F Final Results: The Magnified Versions for AMD and Intel

Figure 21: Comparison of the tuned and default variants of SMQ, PMOD, and OBIM, an optimized version of the
classic Multi-Queue, SprayList, and RELD schedulers on the AMD platform. Speedups are versus the baseline Multi-
Queue executed on a single thread. Implementation details are provided in the main body.

41

Figure 22: Comparison of the tuned and default variants of SMQ, PMOD, and OBIM, an optimized version of the
classic Multi-Queue, SprayList, and RELD schedulers on the Intel platform. Speedups are versus the baseline Multi-
Queue executed on a single thread. Implementation details are provided in the main body.

42

	1 Introduction
	2 The Stealing Multi-Queue
	2.1 The Classic Multi-Queue Design
	2.2 The Stealing Multi-Queue

	3 Analysis of the Stealing Multi-Queue
	4 SMQ Implementation Details
	5 Evaluation
	6 Discussion
	A Full Analysis
	B Tuning OBIM and PMOD Schedulers
	C Classic Multi-Queue Optimizations
	C.1 Classic Multi-Queue Optimizations on AMD: insert=Temporal Locality, delete=Temporal Locality
	C.2 Classic Multi-Queue Optimizations on Intel: insert=Temporal Locality, delete=Temporal Locality
	C.3 Classic Multi-Queue Optimizations on AMD: insert=Temporal Locality, delete=Task Batching
	C.4 Classic Multi-Queue Optimizations on Intel: insert=Temporal Locality, delete=Batching
	C.5 Classic Multi-Queue Optimizations on AMD: insert=Batching, delete=Temporal Locality
	C.6 Classic Multi-Queue Optimizations on Intel: insert=Batching, delete=Temporal Locality
	C.7 Classic Multi-Queue Optimizations on AMD: insert=Batching, delete=Batching
	C.8 Classic Multi-Queue Optimizations on Intel: insert=Batching, delete=Batching
	C.9 Comparison of Task Batching and Temporal Locality Optimizations

	D Stealing Multi-Queue Implementation Details
	D.1 SMQ via D-Ary Heaps on AMD
	D.2 SMQ via D-Ary Heaps on Intel
	D.3 SMQ via Skip Lists on AMD
	D.4 SMQ via Skip Lists on Intel

	E NUMA Awareness
	E.1 MQ Optimized NUMA: insert=Temporal Locality, delete=Temporal Locality
	E.2 MQ Optimized NUMA: insert=Temporal Locality, delete=Task Batching
	E.3 MQ Optimized NUMA: insert=Task Batching, delete=Temporal Locality
	E.4 MQ Optimized NUMA: insert=Task Batching, delete=Task Batching
	E.5 SMQ via D-Ary Heaps NUMA
	E.6 SMQ via Skip Lists NUMA

	F Final Results: The Magnified Versions for AMD and Intel

