N)
)
Check for
updates

The State-of-the-Art LCRQ Concurrent Queue
Algorithm Does NOT Require CAS2

Raed Romanov
Higher School of Economics
St. Petersburg, Russia
raid_r@mail.ru

Abstract

Concurrent queues are, arguably, one of the most important
data structures in high-load applications, which require them
to be extremely fast and scalable. Achieving these properties
is non-trivial. The early solutions, such as the classic queue
by Michael and Scott, store elements in a concurrent linked
list. Reputedly, this design is non-scalable and memory-
inefficient. Modern solutions utilize the Fetch-and-Add in-
struction to improve the algorithm’s scalability and store
elements in arrays to reduce the memory pressure. One of
the most famous and fast such algorithms is LCRQ. The main
disadvantage of its design is that it relies on the atomic CAS2
instruction, which is unavailable in most modern program-
ming languages, such as Java, Kotlin, or Go, let alone some
architectures.

This paper presents the LPRQ algorithm, a portable modi-
fication of the original LCRQ design that eliminates all CAS2
usages. In contrast, it performs the synchronization utilizing
only the standard Compare-and-Swap and Fetch-and-Add
atomic instructions. Our experiments show that LPRQ pro-
vides the same performance as the classic LCRQ algorithm,
outrunning the fastest of the existing solutions that do not
use CAS2 by up to 1.6X.

CCS Concepts: - Computing methodologies — Concur-
rent algorithms; Shared memory algorithms.

Keywords: concurrent queue, ring buffer, lock-free

1 Introduction

Queues are one of the most fundamental and practical data
structures in concurrent programming. A tremendous amount
of research has been gained into developing fast and effi-
cient solutions. The first lock-free algorithm was suggested

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

© 2023 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 979-8-4007-0015-6/23/02...$15.00
https://doi.org/10.1145/3572848.3577485

14

Nikita Koval
JetBrains
Amsterdam, The Netherlands
ndkoval@ya.ru

by Michael and Scott almost three decades ago [16], start-
ing the era of building efficient non-blocking data struc-
tures. Roughly, their design bases on a linked list structure,
maintained via Head and Tail pointers; Enqueue(..) and
Dequeue () update them via atomic Compare-and-Set (CAS)
instruction. Recently, this design has been changed drasti-
cally, utilizing the Fetch-and-Add (FAA) instruction to im-
prove the algorithm’s scalability and storing elements in
arrays to reduce the memory pressure. One of the most fa-
mous algorithms of this family is LCRQ [18], suggested by
Morrison and Afek in 2013.

Infinite array queue. The LCRQ design was inspired by a
straightforward queue algorithm, which manipulates an in-
finite array with positioning counters for Enqueue(. .) and
Dequeue () operations. To add a new element, Enqueue(. .)
increments the Tail counter via Fetch-and-Add, obtain-
ing the value t right before the increment. After that, it
stores the element into the reserved cell A[t] and finishes.
The Dequeue () operation works symmetrically, increment-
ing its Head counter and extracting the element from the
reserved cell ALh]. Figure 1 below shows how the data struc-
ture changes when inserting and extracting an element.

4] 1 4] 1
enq(a)
. —) L)
Tail=0 Tail=1
Head=0 Head=0 Head=1

Figure 1. Infinite array queue structure.

Due to concurrency, it is possible for Enqueue(. .) to in-
crement Tail and pause, so Dequeue() may reserve a cell
that is still empty. To make progress, Dequeue() poisons
the empty cell by moving its state to a special L value and
restarts. After that, Enqueue(..) observes that the cell is
broken and also restarts; it installs the element via CAS to syn-
chronize. Listing 1 presents the corresponding pseudocode.
The LCRQ design. Afek and Morrison elaborated this idea
and developed an extremely efficient LCRQ algorithm, using
ring buffers under the hood, which they call CRQ-s (Concur-
rent Ring Queues). Roughly, CRQ is a bounded queue with
relaxed semantics regarding the conditions under which
Enqueue(. .) can fail. Similarly to the infinite array queue,
Enqueue(. .) increments its Tail counter and processes the

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572848.3577485&domain=pdf&date_stamp=2023-02-21

S NS, BSOS N

O ®

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

Head, Tail: Long // 64-bit counters
A: EL] // Infinite array for elements of type E

fun Enqueue(item: E) = while (true) {
t := Tail.FAA(1)
if (ALt].CAS(null, item)) return

}

fun Dequeue(): E = while (true) {
if (Head >= Tail) return null // empty?
h := Head.FAA(1)
if (ALh] == null && A[h].CAS(null, 1)) continue
return A[h]

Listing 1. Infinite array queue algorithm.

cell ALt % R], where R is the size of the ring buffer. Symmet-
rically, Dequeue () increments Head and processes the cell
ALh % R]. Once the current ring buffer is full, Enqueue(. .)
closes it for further insertions and creates a new CRQ, con-
structing a linked list of them. Even though the high-level
idea is similar, making the array circular changes the syn-
chronization completely.

In the infinite array queue, each cell can be processed by ex-
actly one Enqueue(. .) and exactly one Dequeue (), making
the synchronization between them straightforward. In the
ring buffer structure, each R-s Enqueue(. .) and Dequeue ()
attempt manipulates the same cell in the ring buffer of size
R. This leads to several potential issues, such as adding an
element to the middle of the queue or out-of-order removals.
To solve the races, LCRQ equips each cell with a 64-bit epoch
counter. Intuitively, it ensures that Dequeue () extracts the
element only from its h / R epoch, while Enqueue(. .) never
installs the element if the conjugate Dequeue () of the same
epoch has already processed and skipped the cell.

LCRQ non-portability. The main problem of the LCRQ de-
sign is its portability. Each cell is equipped with an epoch
counter, which LCRQ updates atomically along with the
cell state via CAS2. While this instruction gains popularity
in modern hardware architectures, most programming lan-
guages, such as Java, Kotlin, or Go, do not provide such a
primitive, making it impossible to implement LCRQ in them.

Several approaches were suggested to eliminate the CAS2
usages. Ramalhete [22] proposed a simple lock-free queue
that never reuses ring buffers, allocating a new one when
reaching the end of the internal array. This design reminis-
cences the infinite array queue and does not use epochs,
allowing only one Enqueue-Dequeue pair to process the cell.
Yang and Mellor-Crummey [27] extended this approach to
provide wait-freedom. These works and our experiments
show that LCRQ surpasses both solutions.

Another way to get rid of CAS2 is to manipulate 32-bit
values and 32-bit epochs, which can be packed into a single
64-bit word and updated atomically by CAS. Nikolaev [20]
uses such queues to build his SCQ ring buffer algorithm,

Raed Romanov and Nikita Koval

maintaining an array of elements and two queues of 32-bit
indices in this array, referencing free cells for Enqueue(. .)
and occupied cells for Dequeue (). Feldman and Dechev [5]
approached the problem another way, integrating the epoch
field into elements. Besides that, their algorithm stores epochs
in empty cells, which is technically impossible in most lan-
guages with garbage collection, such as Java or C#. Compared
to LCROQ, both these solutions are significantly less efficient.

Our contribution. In this paper, we present the LPRQ con-
current queue algorithm, a portable modification of LCRQ,
which does not require CAS2. Essentially, we apply two tech-
niques to the original LCRQ design. First, we get rid of CAS2
in Dequeue (), making the Enqueue(. .) operation to be re-
sponsible for maintaining epochs. Yet, it should place the
element only in a correct epoch, which LCRQ solves via CAS2.
Instead, LPRQ “locks” the cell by installing a thread-unique
token, checking the epoch and replacing the token with the
element after that. From the implementation side, this thread-
unique token is usually a reference to the currently running
thread (e.g., java.lang.Thread instance on the JVM).

We have implemented the LPRQ algorithm in C++ and
compared it against the original LCRQ solution and various
queues that do not require CAS2. Our experiments show
that our LPRQ algorithm provides the same performance as
LCRQ, surpassing the best of other solutions by up to 1.6X.

2 Preliminaries

Memory model and atomic operations. For simplicity, we
assume a sequentially consistent memory model. Besides the
plain reads and writes, we use Compare-and-Set (CAS) and
Fetch-and-Add (FAA) atomic operations, which are acces-
sible in all modern programming languages. In the LCRQ
algorithm discussion, we also use the non-portable CAS2
instruction, which updates two contiguous (not arbitrary)
memory locations; it is also known as cmpxchg16b on x86.

Memory reclamation. For simplicity, we assume that the
environment is provided with a garbage collector. For manual
memory reclamation, one can use a technique such as Hazard
Pointers [15] or Hazard Eras [23].

Nullability. The original LCRQ algorithm and our LPRQ
modification assume that the element type E is provided with
a special null value, which is never inserted into the queue.
We use it to specify empty array cells. Returning null in
Dequeue () indicates that the queue is empty.

Thread tokens. Our PRQ algorithm assumes that the envi-
ronment provides thread-unique tokens, denoted as T ;hreqdrd,
which can be stored in the same locations as elements. In
short, Enqueue(. .) installs such a token in the cell before
storing the element to ensure that it performs the operation
in a correct epoch. In practice, thread tokens can be imple-
mented by reserving a single bit of the value to distinguish
them from elements. In case this bit is set, the others store
the index of the thread which owns the token. Otherwise

The State-of-the-Art LCRQ Concurrent Queue Algorithm Does NOT Require CAS2

the other bits store the element. On some platforms, which
do not allow “bit stealing”, a reference to the currently run-
ning thread can be used as a thread token. E.g., on the JVM
java.lang.Thread instance can be efficiently obtained via
Thread.currentThread().

3 The LPRQ Algorithm

We begin by discussing the original LCRQ design, which uses
the non-portable CAS2 instruction. Then, we eliminate its us-
age in two steps. First, we get rid of CAS2 in Dequeue(),
making the Enqueue(..) operation to be responsible of
maintaining per-cell epochs. Next, we get rid of CAS2 in
Enqueue(..) by using thread-unique tokens to “lock” the
cell and perform the rest of the synchronization safely.

3.1 The LCRQ Overview

The key ingredient behind LCRQ is a special ring buffer
(CRQ) data structure, which can be closed for further in-
sertions. In brief, CRQ manipulates a pre-allocated array of
constant size and two positioning counters for Enqueue(. .)
and Dequeue () operations. When CRQ is full, Enqueue(. .)
closes it to prevent further insertions and allocates a new
CRQ, constructing a linked list of them.

LCRQ on top of ring buffers. Listing 2 presents the high-
level LCRQ implementation that manipulates ring buffers
(CRQ-s). Our LPRQ algorithm leverages the same design,
replacing the non-portable CRQ ring buffer implementation
with the new PRQ (Portable Ring Queue) one.

Similarly to the Michael-Scott queue [16], the linked list
is specified via Head and Tail pointers (line 2). To insert an
element, Enqueue(. .) reads the last CRQ (line 6) and tries
to add the element into it (line 7). On success, the operation
finishes immediately. Otherwise, the current CRQ is full
and closed for further insertions. This way, Enqueue(. .)
allocates a new CRQ instance with the element inserted
right away (line 9). Then, it tries to add this new CRQ right
after the current one in a way similar to the Michael-Scott
queue (lines 10-15). In case a concurrent Enqueue(. .) has
already added a new CRQ, the current operation restarts.

The Dequeue () operation manipulates the Head CRQ and
tries to extract an element from it, finishing on success
(lines 19-21). In case the extraction fails, the current CRQ is
empty, while the queue may still contain non-empty CRQ-s.
Thus, Dequeue () reads the next CRQ, returning null if it is
not present (line 23). Otherwise, concurrent Enqueue(. .)-s
could add elements to the current CRQ between we observed
it empty and read crq.Next. Therefore, Dequeue() tries to
extract an element from the current queue again (line 25),
finishing on success (line 26). Otherwise, the current CRQ is
empty and closed, so Dequeue() updates the Head pointer
to the next CRQ and restarts (line 28).

High-level ring buffer design. We move our attention to
the CRQ implementation. Figure 2 shows the ring buffer

[N

)

RN

16

19 crq :=
)

27 //
28 Head.CAS(crq,

32 Next:

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

1 class LCRQ<E> {
Head, Tail: CRQ

4 fun Enqueue(item: E) = while (true) {

5 // fast-path: add to the current CRQ

6 crq := tail

7 if (crg.Enqueue(item)) return

8 // slow-path: Tail is full, add new CRQ
9 newTail := CRQ(); newTail.Enqueue(item)
0 if (crg.Next.CAS(null, newTail)) {

1 Tail.CAS(crq, newTail)

2 return

3 } else {

4 Tail.CAS(crq,
5 }

6}

crq.Next)

8 fun Dequeue(): E = while (true) {
Head
res := crq.Dequeue()
1 if (res != null) return res
2 // failed, is this queue empty?
if (crg.Next null) return null
// “crq” is closed but may store elements
res := crq.Dequeue()
6 if (res != null) return res
‘crg T is empty, update HEAD and restart
crqg.Next)

1 class CRQ<E> {
CRQ<E> = null
3 // enqueues item and returns true

34 // or closes CRQ and returns false
35 fun Enqueue(item:
36 fun Dequeue():

37 3}

E): Bool
E // returns null if CRQ is empty

Listing 2. The high-level LCRQ [18] implementation manip-
ulates CRQ-s. The LPRQ high-level design is identical with
a difference only in replacing CRQ with PRQ from Listing 4.

structure that bases on an array A of size R to store ele-
ments equipped with Head and Tail positioning counters;
their values modulo R specify indices for the next element
insertion and extraction. Initially, all array cells are empty
and store null. The current size of the ring buffer equals
(Tail - Head) and never exceeds R.

Head=5

Tail=9
Figure 2. An example of a ring buffer of size R = 8. Head % R

points to the next element to be extracted, while Tail %R
points to the next cell to put an element.

To add an element, Enqueue(. .) first increments its Tail
counter via the atomic Fetch-and-Add instruction, obtain-
ing index t right before the increment and placing the el-
ement to the cell A[t %R] if it is empty. Symmetrically,

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

Dequeue() increments Head via FAA and extracts the ele-
ment from A[h % R]. This design reminds the infinite array
queue in Listing 1.

Cell epochs. For further discussion, we need to introduce op-
eration index and operation cycle notions. When an operation
increments Head or Tail via FAA, it returns the value i of
the counter right before the increment. We call this value i
the index of the operation, while i / R is the operation cycle.

It is crucial for Dequeue() to take element only from
the conjugate Enqueue(. .) of the same operation cycle. To
demonstrate that, we consider two examples on a ring buffer
of size R = 2, showing that extracting an element that was put
on another cycle results in the FIFO semantics violation. First,
we consider the execution presented in Figure 3a. The thread
T1 invokes Enqueue(. .), which increments Tail and gets
preempted by the scheduler. The execution switches to the
thread T2, which begins by inserting x and y. Specifically,
eng(x) obtains the index 1 and puts x into the 1-st cell on
cycle 0, while eng(y) obtains the index 2 and puts y into the
0-th cell on cycle 1. Then, T2 performs two Dequeue ()-s, ex-
tracting x and y in reverse order. The problem is that deq : y
(0-th cell on cycle 0) retrieves the element that was put on a
higher cycle 1; thus, extracting it from the future.

A similar issue occurs when Dequeue () retrieves an ele-
ment that was placed on a lower cycle; we present such an
execution in Figure 3b. First, T1 inserts x and y on cycle 0. Af-
ter that, it invokes Dequeue (), which increments Head and

Tail.FAA(1): 0

T1 I—Q— ----------------------- GE(Y)) ==ssessesessasesasoszazozazad
T2 I—enq(x)-l |—enq(y)-| |—deq: y-I |—deq: x-|
Tail=1 Tail=2 Tail=3 Tail=3 Tail=3
Head=0 Head=0 Head=0 Head=1 Head=2

(a) Dequeuing from the future breaks the FIFO semantics.

Head.FAA(1): @

T Feng(x) | Fena(y) { |-o—------- deq: NULL -----moemeeee
T2 |—deq:y-| |—deq:x-|

State %I;
Head=1 Head=2 Head=3
Tail=2 Tail=2 Tail=2

(b) Dequeuing from the past breaks the FIFO semantics.

Figure 3. These two examples show that Dequeue () must
take element only from the conjugate Enqueue(. .), cycles
of which coincide. Here, two threads access a ring buffer of
size R = 2.

Raed Romanov and Nikita Koval

gets preempted. The execution switches to T2, which per-
forms two Dequeue ()-s. (Recall that Head has already been
incremented by T'1.) The first Dequeue () obtains the index 1
and extracts y from the 1-st cell on cycle 0. The second oper-
ation obtains index 2, taking x from the 0-th cell on cycle 1.
Similar to the previous example, the elements are extracted
in reverse order, violating the FIFO queue semantics.

One way to ensure that an element can be taken only on
the correct cycle is to associate each cell with an epoch. When
Enqueue(. .) puts an element into a cell, it also updates the
cell epoch to its operation cycle. In turn, Dequeue () extracts
the element only if the cell epoch matches its cycle.

Figure 4 shows how this scheme fixes the incorrect execu-
tion in Figure 3b. The execution begins by adding x and y
on cycle 0. After that, T1 invokes Dequeue (), which incre-
ments Head and gets preempted. The execution switches to
T2, which performs two Dequeue ()-s. As in the previous ex-
ample, the first Dequeue () obtains the index 1 and extracts
y from the 1-st cell on cycle 0. However, the next Dequeue ()
in T2 cannot retrieve x anymore, as the 0-th cell epoch is 0,
while the operation cycle is 1. Thus, this Dequeue () restarts,
finds the ring buffer empty, and returns null. After the ex-
ecution switches back to T1, the corresponding Dequeue ()
finishes by extracting x from the 0-th cell.

Head.FAA(1): @
T Fena(0d Fena(y) | fe—eeee T — —
T2 %deq: y% Fdeq: null#
element
TR §h) Bh
545 55
Head=1 Head=2 Head=3 Head=3
Tail=2 Tail=2 Tail=2 Tail=2

Figure 4. Epochs help to keep FIFO order of elements.

The CRQ algorithm. We need to update the cell epoch and
its state atomically; otherwise, Dequeue () may observe an
element of incorrect epoch and take it, breaking the FIFO
semantics. CRQ implements this atomic update via the hard-
ware CAS2 instruction.

Listing 3 presents the CRQ pseudocode. The cell data struc-
ture has a 64-bit Value (line 5) and a 64-bit SafeAndEpoch
(line 2) fields; the latter packs a special Safe flag along with
the Epoch. Besides the Head and Tail counters, CRQ ad-
ditionally stores the Closed flag (line 9)!, which indicates
whether the queue is closed for insertions, and a pointer to
the next CRQ in the linked list of them, which is used by
LCRQ in Listing 2. Enqueue(..) and Dequeue () operations
proceed in iterations (see the loops at lines 13 and 34). Each
iteration starts by performing FAA on Tail (line 14) or Head
(line 35), obtaining the iteration index and its cycle. On each

1Originally, CRQ reserves a higher bit of Tail to store the Closed flag. For
simplicity, we put it into a separate variable.

1
9
3
4
5
6

7
8
9

10

11

12

13

14

15

16

The State-of-the-Art LCRQ Concurrent Queue Algorithm Does NOT Require CAS2

struct Cell<E> {

SafeAndEpoch: packed { // 64 bits 35
Safe: Bool = true, Epoch: Long = @ 36

} 37
Value: E = null 38

} 39
40

Head: Long = @, Tail: Long = 0 41
Closed: Bool = false 42
A: Cell<E>[R] 43
Next: CRQ<E> = null // pointer to the next CRQ 44
45

fun Enqueue(item: E): Bool = while (true) { 46
t := Tail.FAA(1) 47
if (Closed) return false 48
cycle :=t / R; 1 :=t %R 49
<safe, epoch> := A[i].SafeAndEpoch 5(
value := A[i].Value 51

52

if (value == null && // the cell is empty 53
// and enqueue is not overtaken 54

epoch <= cycle && (safe || Head <= t)) { 55

// enqueue transition 56

if (A[i].CAS2(<<safe, epoch>, null>, 57
<<true, cycle>, item>)) 58

return true 59

} 60
// is the queue full? 61
if (t - Head >= R) { 62
Closed := true 63
return false 64

} 65

} 66

34 fun Dequeue(): E =

}

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

while (true) {

h := Head.FAA(1)

cycle := h / R; i := h %R

while (true) { // try update the cell state
<safe, epoch> := A[i].SafeAndEpoch
value := A[i].Value

when { // transitions according to Figure 5

Listing 3. The CRQ algorithm by Morrison and Afek [18].

iteration, the operation reads the cell state (lines 17-18, 38—
39) and performs an update transition, restarts, or finishes.
Figure 5 illustrates possible cell state transitions.

Consider an iteration of Dequeue() with index h and
cycle c. If case the cell’s epoch is greater than c (line 61),
this Dequeue() attempt has been overtaken between the
counter increment and reading the cell epoch. In this case,
this Dequeue () attempt fails, and the operation restarts. Oth-
erwise, one of the following transitions is performed:

o If the cell contains an element and the epoch matches
the iteration cycle ¢, a dequeue transition is performed.
Dequeue() tries to extract the element and increment
the cell epoch, via CAS2 (line 44), finishing on success.
If the cell is empty, an empty transition is performed,
preventing Enqueue(. .) to put an element on cycle
c. For that, Dequeue() atomically increases the cell
epoch to ¢ + 1 if the cell is empty (line 50).

At last, if the cell contains an element, but the epoch
is lower than ¢, an unsafe transition is performed. To
safely skip this cell, Dequeue () has to prevent installing
an element on cycle c. The trick is to reset the Safe
bit (line 56), making Enqueue () eligible to install an
element only if Head is lower than the global cell index
(line 22).

18

epoch == cycle && value != null -> {
// dequeue transition
if (A[i].CAS2(<<safe, epoch>, value>,
<<safe, cycle + 1>, null>))
return value
}
epoch <= cycle && value == null -> {
// empty transition
if (AL[i].CAS2(<<safe, epoch>, value>,
<<safe, cycle + 1>, value>))
break
}
epoch < cycle && value != null -> {
// unsafe transition
if (A[i].CAS2(<<safe, epoch>, value>,
<<false, epoch>, value>))
break
}
// else epoch > cycle
else -> break // deq is overtaken
}
}
// is the queue empty?
if (Tail <= h + 1) return null
CAS2
i:gﬁzgiion @ - esc
CAS2
[t)igﬁzﬁion - @ e=¢
CAS2
iTZEZition @ - @ es{c
CAS2
g::iz‘istion - ISE

Figure 5. Cell state transitions in CRQ: ¢ is the operation
cycle, e is the cell epoch before the transition.

Whenever CAS2 that performs a transition fails, the cell
update procedure restarts (loop at line 37). At the same time,
if Dequeue () completes an iteration without extracting an
element, it reads Tail to check if the queue is empty (line 65),
returning null in this case and restarting if the queue might
have elements.?

Now consider an iteration of Enqueue(. .). After perform-
ing FAA on Tail, Enqueue(. .) checks if the queue is closed
(line 15). In this case, it immediately returns false. Then, if

2 As proposed by Morrison and Afek [18], Dequeue () may also advance Tail
up to the current Head before returning null. We omit this optimization
for simplicity.

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

the cell is empty and Enqueue(. .) is not overtaken (lines
20-22), it tries to perform an enqueue transition, returning
true on success. On failure, it checks whether the queue is
potentially full and, therefore, should be closed (line 29). If
so, Enqueue(. .) updates the Closed flag to true (line 30),
preventing further insertions, and returns false. In case
this CRQ has remaining space, Enqueue(. .) proceeds to the
next iteration.

The enqueue transition (line 24) puts the element to the cell
and advances the epoch up to the iteration cycle. Notably, the
operation must verify that it is not overtaken by Dequeue ()
of a higher cycle (line 22). Additionally, in case the Safe bit
is set, Enqueue(. .) cannot rely on the cell epoch to ensure
that the operation has not been overtaken. Instead, it reads
the current Head value and compares it to the iteration index
(line 22). On successful transition, Enqueue(. .) also sets the
Safe bit to true, thus, recovering the cell.

3.2 The PRQ Algorithm

To construct our PRQ algorithm, we apply two transfor-
mations to CRQ. First, we shift cycle numbers and modify
transition preconditions, which allow to replace all CAS2 us-
ages in Dequeue () with plain CAS-s. Second, we propose an
efficient way to emulate CAS2 in Enqueue(. .), which it uses
to place the element in the correct epoch, with a sequence of
CAS-s. Unlike traditional k-CAS algorithms [8], our approach
does not use descriptors and involves neither allocation nor
memory indirection.

Elimination of CAS2 in Dequeue (). We apply the following
changes to the original CRQ algorithm:

e We initialize Head and Tail with R, so the operations
start from cycle 1 (unlike 0 in CRQ).

e Enqueue(. .) iseligible to place the element only when
the cell epoch is strictly lower than the operation cycle.

e When Enqueue(. .) places the element, it raises the
cell epoch to the operation cycle. Thus, successful
Enqueue(. .)-s always increase the cell epoch.

o When Dequeue () extracts the element, it keeps the cell
epoch unchanged. The only exception is the empty tran-
sition, which raises the epoch to the operation cycle.

These changes effectively turn all CAS2 in Dequeue() to
double-compare single-swap operations, changing only the

Value field on successful retrieval, and updating SafeAndEpoch

in case of empty and unsafe transitions. We need to add
one more ingredient to implement them via plain CAS-s.
Intuitively, Dequeue() should read a consistent snapshot
of the cell state before updating it. Like in CRQ, it reads
SafeAndEpoch followed by Value (lines 38-39), additionally
verifying that SafeAndEpoch has not been changed. If so, a
correct cell snapshot has been obtained, as epochs always
increase, and the Safe flag resets only when Enqueue(. .) in-
creases the cell epoch. If the snapshot has not been obtained,
Dequeue() tries to do that again.

19

Raed Romanov and Nikita Koval

Enqueue CAS2

transition @ i 3SE
Dequeue 1 ﬁ, ‘ e—c
transition (©) ©) -
ey s e<c
transition

CAS
insafe o5 MR ..
transition G e

Figure 6. Cell state transitions in the modified CRQ algo-
rithm: c is the operation cycle, e is the cell epoch before the
transition.

Figure 6 summarizes the cell state transitions in the modi-
fied CRQ algorithm, which we discussed above. We present
the corresponding pseudocode in Appendix A.

CAS2 emulation in Enqueue(..). With the changes dis-
cussed above, only Enqueue() requires CAS2 to place its
element and increase the epoch atomically (line 24 in List-
ing 3). We provide a smart way to simulate this CAS2 with a
three-step procedure illustrated in Figure 7:

1. Cell reservation. To place the element and increase the
epoch, Enqueue(. .) first “locks” the cell by installing
a thread-unique token T ., Threqq into it. (Regarding the
implementation, a reference to the currently running
thread can be used as a thread token.)
2. Epoch promotion. Next, it increases the cell epoch up
to the operation cycle.
3. Element publishing. Finally, Enqueue(. .) replaces its
T curThread With the element.
The key idea is that other operations are not allowed to
change the cell epoch when it stores a thread token, so when
Enqueue(. .) replaces it with the element on the last step,
it is guaranteed that the cell epoch has not been changed.

lock advance publish

the cell the epoch the element

Figure 7. CAS2 emulation in Enqueue(. .) to place the ele-
ment correctly. Here, thread ¢ inserts x on cycle 1.

The pseudocode. Listing 4 presents the pseudocode of our
PRQ algorithm. As for the data structure, it is the same as one
of CRQ (Listing 3); the only difference is that PRQ initializes
Head and Tail with R instead of 0 (line 2).

The Enqueue(. .) operation begins by incrementing its
Tail counter, obtaining index h (line 5). Then, it checks
whether the cell is empty or locked and the operation is not
overtaken, restarting in this case (lines 13-15). Otherwise, it
tries to place the element following the three-step procedure
described above (lines 18-29).

The Dequeue () operation begins by incrementing its Head
counter and obtaining index h (line 41). Next, it snapshots
the cell, obtaining its epoch, the Safe flag, and the cell value
(lines 44-47), followed by one of the listed transitions:

1

2
3

1
5
6

The State-of-the-Art LCRQ Concurrent Queue Algorithm Does NOT Require CAS2

// initially
Head = R; Tail

R

fun Enqueue(item: Bool while (true) {
t := Tail.FAA(1)

if (Closed) return false 45

E):

cycle :=t / R; 1 :=t %R

<safe,
value

epoch> := A[i].SafeAndEpoch
ALil.Value

if (value is null or T && // not occupied 5
// and enqueue is not overtaken 5
epoch < cycle && (safe || Head <= t)) { 54

// lock the cell with the thread token
if (!'ALi].Value.CAS(value,
goto checkOverflow

TcurThread))

// advance the epoch
if (!ALi].SafeAndEpoch.CAS(<safe, epoch>,
<true, cycle>)) { 2
ALil.Value.CAS(TcurThread, hull) // clean up

goto checkOverflow

} 65
66

// publish item 67
if (ALil.Value.CAS(TcurThread, item)) 68
return true 69

} 70
71

checkOverflow: // is the queue full? 72
if (t - Head >= R) { 73
Closed := true 74
return false 75

} 76

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

fun Dequeue(): E = while (true) {
h := Head.FAA(1)
cycle := h / R; i :=h %R

3

while (true) { // try update the cell state

<safe, epoch> := A[i].SafeAndEpoch
value := A[i].Value
if (<safe, epoch> != A[i].SafeAndEpoch)

continue // inconsistent view of the cell
when {
epoch cycle && value is not null or T -> {
// dequeue transition
ALil.Value null
return value

}
epoch <= cycle && value is null or T -> {
// empty transition
// unlock the cell
if (value is T &&
'A[Li].Value.CAS(value,
continue
// advance the epoch
if (A[i].SafeAndEpoch.CAS(<safe,
<safe,

null))

epoch>,
cycle>))
break
}
epoch < cycle && value is not null
// unsafe transition
if (A[i].SafeAndEpoch.CAS(<safe,
<false,

or T -> {

epoch>,
epoch>))
break
}
// epoch > cycle
else -> break // deq is overtaken
}
}
// is the queue empty?
if (Tail <= h + 1) return null

Listing 4. The PRQ algorithm. Yellow-highlighted operations emulate CAS2.

e Dequeue transition is performed in case the cell is
occupied and the epoch matches the iteration cycle
(line 50) — it replaces the stored element with null
(line 52) and finishes (line 53). As the epoch cannot be
changed while the cell is occupied, it is safe to use an
ordinary store instead of a CAS here.

Empty transition is applied either when the cell is
empty or when it is locked and the epoch is lower
than the operation cycle (line 55). For that, Dequeue ()
first replaces the thread token with null (line 59), ad-
vancing the epoch to the operation cycle after that
(line 62). In case any of these CAS-s fails, the cell up-
date procedure restarts.

Unsafe transition is performed on an occupied cell if its
epoch is lower than the operation cycle. Like in CRQ,
Dequeue () resets the Safe bit (line 68) and restarts.

Notably, when Enqueue(..) restarts, it also reads the
Head counter to verify that the queue is not full (line 34),
closing it (line 35) and returning false otherwise.

20

4 Correctness

Similar to LCRQ, our LPRQ algorithm constructs a linked
list of ring buffers, which follow the semantics of a tantrum
queue [18]. Specifically, Enqueue(. .) can non-deterministi-
cally refuse to insert an element and close the ring buffer.
After it is closed, all further insertion attempts are bound to
fail. To show the LPRQ correctness, we prove that our PRQ
ring buffer is a linearizable tantrum queue. As the high-level
part LPRQ, which manipulates ring buffers (see Listing 2), is
identical to the one of LCRQ, we do not analyze it.

PRQ linearizability. To prove that PRQ is a linearizable
tantrum queue, we follow the approach by the LCRQ au-
thors [18]. Consider an execution E of operations < op : res >,
where op € {enq, deq} and returns res. We assume that an
operation op is active between its first and last events in E.
We denote the result of the last Head.FAA(1) / Tail.FAA(1)
call performed by the Dequeue() / Enqueue(..) operation
op as index(op).

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

First, we show that each successful Enqueue (x) invocation
is paired with Dequeue () of the same index, which returns x.
Essentially, it guarantees that Dequeue () -s retrieve elements
of correct epochs, and successfully added elements do not
disappear.

Lemma 4.1. Consider a successful Enqueue(x) operation
< enq : true > with index(enq) = i. If the execution E con-
tains a Dequeue () operation deq, which performs FAA onHead
that returns i, the following statements are correct:

(1) index(deq) = i,

(2) deq returns x,

(3) if deq obtains its index before enq, deq is still active

when enq performs its last FAA on Tail.

Proof. Consider the execution of engq after it has performed
the last FAA on Tail, obtaining the index i. The CAS that
installs the thread token in the cell A[i % R] (line 18), the CAS
that advances the epoch (line 22), and the CAS that places its
element x (line 29) must succeed. In case one of the CAS-s
failed, the operation would restart, performing a new FAA
on Tail and obtaining a higher index.

To show that Enqueue(. .) places the element in a correct
epoch, we prove that other operations do not change the
cell epoch between it locks the cell (line 18) and replaces
the thread token with the element (line 29). Indeed, when
another Enqueue(. .) advances the epoch (line 22), it first
installs its thread token (line 18), which would prevent the
element publishing. Similarly, when Dequeue() advances
the epoch (line 62), it first “unlocks” the cell (line 59), which
also would result in unsuccessful element publishing.

The discussion above shows that at some point in E, the
cell state is { SafeAndEpoch : <true, i /R>, Value : x}.
Next, we prove that only Dequeue () with index i can take
x, and other operations cannot change the cell epoch until
this Dequeue retrieves the element. Because the cell epoch
is always advanced, it is unique for each published element.
Thus, after the read of a consistent snapshot of the cell state
(lines 44-47), Dequeue () can observe x only with the epoch
i/R, and so it will perform the dequeue transition (line 52)
only if its cycle matches the Enqueue(. .)’s cycle.

Now we show that the lemma statements are correct. Ob-
viously, index(deq) > i, as Head.FAA(1) returned i at some

pointin E, according to the lemma. Suppose that index(deq) > i.

In this case, one of the following events must happen in deq
after it obtained the index i and before it obtains i + 1:

(a) deq performs empty transition (line 62)
(b) deq performs unsafe transition (line 68)
(c) deq observes SafeAndEpoch.Epoch > 1i / R (line 73)

We show that assuming any of these events leads to a
contradiction. In case of (a), deq raises the epoch to i/R.
So eng could not raise it to the same value with its sec-
ond CAS (line 22). In case of (b), deq resets the Safe bit
(line 68). Succeeding of enq implies that some eng” (maybe

Raed Romanov and Nikita Koval

enq) with index(enq’) < i observed and recovered the unsafe
cell (line 22). For that, it must observe Head < index(enq’),
which is impossible, as Head > i. Before enq published the
element, the cell epoch was less than i/R. After that, the
epoch became i/R and could not rise while the cell was occu-
pied. So (c) is also impossible. As result, deq can only finish
with index(deq) = i, returning the element x (line 53), which
implies the (1) and (2) lemma statements.

At last, (3) follows by the fact that deq cannot complete
before eng raises the cell epoch and installs the element,
which happens after its last Tail.FAA(1). O

Theorem 4.2. PRQ is a linearizable tantrum queue.

Proof. We construct a sequential history of the operations
H, processing E sequentially, one event at a time. Then we
prove that H is a linearization of the concurrent history
induced by E. Further, we say "linearize" as a shortcut for
"append to H".

First, we provide linearization points for < enq : - > and
< deq : null > operations:

e < eng: false >. Unsuccessful Enqueue(. .)-s either
observe that the ring buffer is already closed by reading
the Closed flag (line 6) or close the queue by setting
the flag to true (line 35). We linearize them at one of
these points.

e < engq : true >. Successful Enqueue(. .)-s linearize
on their last Tail.FAA(1) (line 5).

e < deq : null >. Unsuccessful Dequeue()-s linearize
on their last read of the opposite Tail counter (line 77),
detecting that the ring buffer is empty and finishing.

Now we need to linearize successful Dequeue()-s. For
that, we maintain a set S of active and not yet linearized
Dequeue () operations. When the deq operation performs its
last Head. FAA (line 41), we either:

e append deq to H if index(deq) < Tail, or

e putdeqinto Sifindex(deq) > Tail, linearizing it later.
We linearize Dequeue ()-s from S right after Enqueue(. .)-s
of the same index. Specifically, when an Enqueue(. .) op-
eration engq linearizes, we remove the deq operation with
index(deq) = index(enq) from S (if one exists), and append
it to H.

Next, we show that H meets the tantrum queue sequential
specification. Successful < deq : res > and < engq : true >
linearize in ascending order of their indices, correctly trans-
ferring elements, as Lemma 4.1 shows. When < deq : null >
linearizes, Head > Tail, and all successful Dequeue ()-s with
indices lower than Tail are already linearized. At last, unsuc-
cessful Enqueue()-s (< engq : false >) must never precede
successful ones. We guarantee it by reading the Closed flag
on each operation attempt (line 6), so all further Enqueue ()-s
are bound to fail.

By the H construction and Lemma 4.1, linearization points
of all operations lie within their execution intervals in E. This

The State-of-the-Art LCRQ Concurrent Queue Algorithm Does NOT Require CAS2

completes the proof of the theorem, showing that PRQ is a
linearizable tantrum queue. O

Progress Guarantees. Now we discuss the PRQ and LPRQ
progress guarantees. First, we show that both Enqueue(. .)
and Dequeue() in the PRQ implementation (Listing 4) are
obstruction-free.

Theorem 4.3. PRQ is obstruction-free.

Proof. The Enqueue(. .) operation performs a finite number
of attempts, either successfully adding the element, or closing
the ring buffer when Tail reaches Head + R.

Similarly, Dequeue () performs finite number of attempts,
either retrieving an element or returning null when the
Head counter reaches Tail. O

We can enhance the progress conditions to operation-wise
lock-freedom following the approaches in [18, 20]. Specifi-
cally, Enqueue(. .) could close the current ring buffer after
a constant number of unsuccessful attempts. In this case, the
LPRQ algorithm is lock-free, similar to LCRQ (we omit the
formal proof, as [18] contains it).

5 Evaluation

We have successfully implemented the proposed LPRQ algo-
rithm in C++ and compared it against the original LCRQ so-
lution, as well as the FAAArrayQueue by Ramalhete [22] and
LSCQ by Nikolaev [20], which also leverage Fetch-and-Add
and do not use CAS2. At last, we add CC-queue [4] to the
comparison, which is the fastest flat-combining-based queue.

Benchmarks. We use two workloads to benchmark the al-
gorithms. In both cases, multiple threads share a concurrent
queue to transfer elements — we measure the throughput
of the system. In the first “enqueue-dequeue pairs” work-
load, inspired by [22], each thread performs Enqueue(. .)
followed by Dequeue(). The second “producer-consumer”
benchmark separates the threads into producers and con-
sumers, so each thread either only sends elements or re-
trieves them. We measure the throughput of this workload
with different producer-consumer ratios: 1:1 (the numbers
of producers and consumers are the same), 1:2 (the number
of consumers is twice as the number of producers), and 2: 1.
In all workloads, the queues are initially empty.

Environment. We run the experiments on a c6i.32xlarge
AWS instance [11], powered by two 3.5 GHz Intel Xeon 8375C
(Ice Lake) 32-core processors, for 128 hardware threads in
total; the L1, L2, and L3 cache sizes are 48KB, 1.25MB, and
54MB, respectively.

Methodology. We measure the time it takes to transfer 10
million elements through the queue and count the system
throughput. To provide stable and statistically significant

22

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

results, we run each experiment 10 times and count the stan-
dard deviation. We also simulate some amount of work be-
tween operations to make the workload more realistic. Specif-
ically, we perform 8 uncontended loop cycles on average,
generating a pseudorandom number in each iteration. Our
internal experiments show that changing the work size does
not affect performance trends. In the “producer-consumer”
benchmark, we keep the work balanced, so when the number
of producers is greater than the number of consumers, the
latter perform less work.

Implementation details. Based on minimal tuning, we find
the ring buffer size of 1024 optimal for all the algorithms;
this matches the prior work [22, 27]. In all implementations,
we put Head and Tail counters on separate cache lines to
avoid false sharing and made Dequeue () “optimistic”, so it
tries to extract an element first, checking for queue emptiness
only on failure, thus, reducing contention on the counters.

Regarding memory management, we use jemalloc [3]
memory allocator and Hazard Pointers [15] reclamation tech-
nique. To verify that the memory reclamation scheme has
no significant impact on the results, we ran an additional
experiment without memory reclamation — the performance
trends stayed the same.

As for the memory model, our implementation relies on
the SC-DRF (sequential consistency for data-race-free pro-
grams) memory model, provided by Java, C++11, and other
real-world weak memory models. We use atomic variables
provided in the standard library to achieve data race freedom.

Results analysis. We present the benchmark results in Fig-
ure 8. The first thing that immediately catches the eye is that
our LPRQ algorithm shows the same performance as LCRQ
across all benchmarks. One may see that counter-intuitive,
as LCRQ performs a single CAS2 instruction when installing
an element into the cell, while LPRQ makes three consecu-
tive CAS-s. This difference in the algorithm does not affect
performance, as in practice, performing extra atomic instruc-
tions on the same cache line induces insignificant overhead.
We have collected statistics on cache misses to confirm that;
please see Appendix B for the data.

Now we compare LPRQ with other queues that do not
use CAS2. First, our solution outperforms the flat-combining-
based CC-Queue in all workloads by up to 6x. The LSCQ
algorithm by Nikolaev is slower by 1.3X on average and
up to 1.6X in the “1:2 producer-consumer” scenario. Finally,
the FAAArrayQueue solution by Ramalhete shows similar
performance on most of the workloads, slightly degrading
when consumers prevail; LPRQ is faster by up to 1.6X.

Artifact. One may easily reproduce the experiments we
have described. An artifact that includes all the queue im-
plementations and the benchmarks is publicly available [24].
Essentially, the artifact contains the following items:

e source code of all considered queue algorithms and
benchmarks;

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

-¥- faa-queue

—F— lcrq

1e7 Enqueue-dequeue pairs benchmark
2.51
wn
~ 2.0
0
g
2
© 1.5
5
i
>
g
S, 1.0 *
3 o
: $t
= 7 \
= i 3 B
03 ‘ _./“-'-’-4 "‘
0.0 4+— I ; . ! ! ! !
1 2 4 8 16 32 64 128
Threads
1e7 2:1 producer-consumer benchmark
1.75 1
£ 1501
0
£ 1.251
c
c
+1.00 1
o
a
< 0.751
(o)}
3 .
E 0.50 N
\
0.25 A *‘*
0.00 . ; ! —
3 6 12 24 48 96 126
Threads

——

Raed Romanov and Nikita Koval

Ilprg Iscq —$- cc-queue
1le7 1:1 producer-consumer benchmark

1.75 A
o 1.501
@
@ 1.254
[%]
S
5 1.004
4.?
3
20.751
(o)}
3
2 0.50
£
|_

0.251

0.00 : . . ! !

2 4 8 16 32 64 128
Threads
1e7 1:2 producer-consumer benchmark

Throughput, transfers / s

0.0

24 48 96 126

Threads

12

Figure 8. Evaluation of the proposed LPRQ algorithm compared to LCRQ [18], FAAArrayQueue [22], and LSCQ [20] that
leverage Fetch-and-Add and the ring buffer structure. In addition, we add CC-Queue [4] that uses the flat combining technique
for the comparison. The benchmarks show the system throughput when sharing the queue to transfer elements across multiple

threads; see the text for details. Higher is better.

e script that runs the benchmarks and produces graphs
similar to the ones in the paper;

e Docker image configuration, which encapsulates all
required dependencies.

Apart from the experiments we presented in the paper,
our software allows evaluation under different settings. For
example, one can evaluate how the ring size affects the per-
formance or test other producers-consumers ratios. Further-
more, the software is able to collect additional metrics, such
as the number of allocated segments, which may be useful
for investigating the properties of the algorithms deeper.

6 Related Work

Michael and Scott proposed the first lock-free queue [16] that
maintains a concurrent linked list of nodes, each of which
stores an element. The synchronization scheme leverages

23

the classic CAS-loop design: all Dequeue()-s read the Head
pointer and try to update it by CAS, finishing on success and
restarting on failure; similar logic applies to Enqueue(. .).
The disadvantage of this scheme is that under high con-
tention, only one operation succeeds, while others retry as
their CAS attempts fail, leading to sequential processing with
high synchronization cost. Several works [10, 12, 14, 17, 21]
reduce contention on the Head and Tail pointers by perform-
ing the synchronization at another location on CAS failure.
At the same time, bounded queues gained significant pop-
ularity, as they can naturally be implemented on a preallo-
cated array to store elements with positioning counters for
Enqueue(..) and Dequeue(). Importantly, these counters
can be updated by unconditional Fetch-and-Add instruc-
tion, which significantly improves the algorithm’s scalabil-
ity. Yet, implementing such a queue is non-trivial. Certain

The State-of-the-Art LCRQ Concurrent Queue Algorithm Does NOT Require CAS2

solutions [6, 7] lack linearizability, as discussed in [1, 18],
while others do not provide non-blocking progress guaran-
tee [13, 19]. In result, many algorithms [2, 25, 26] update
Head and Tail via CAS to achieve both linearizability and
non-blocking progress guarantee.

In 2013, Morrison and Afek [18] proposed a non-blocking
ring buffer implementation, which is, essentially, a relaxed
bounded queue that allows Enqueue (. .)-s to fail spuriously.
By constructing a linked list of them, they build the LCRQ
unbounded queue algorithm. Regarding synchronization,
LCRQ equips each cell with a special epoch, updating it to-
gether with the cell state via the CAS2 instruction. This is
the most scalable concurrent queue algorithm we are aware
of at the point of writing the paper.

As the CAS2 instruction is not available in most modern
programming languages, several works tried to eliminate it.
The most straightforward idea is not to reuse the segments
of the queue, reclaiming them when Head exceeds R. A sim-
ple yet efficient lock-free algorithm by Ramalhete [22], as
well as a more tricky Yang and Mellor-Crummey’s wait-free
queue [27] successfully employ this approach.

Feldman and Dechev [5] approach the problem from a
different angle, integrating the epoch field into elements. Be-
sides that, their algorithm stores epochs in empty cells, which
is technically impossible in most languages with garbage
collection, such as Java or C#. In the case of manual mem-
ory reclamation, storing epochs in elements and derefer-
encing the latter in Dequeue () makes the element reclama-
tion highly non-trivial. Nikolaev proposed a novel SCQ ring
buffer implementation [20], which does not require the non-
portable CAS2 instruction. The key idea is to store 32-bit
values and maintain 32-bit epochs in the original LCRQ al-
gorithm, packing them in a single 64-bit word and updating
them by the standard CAS. Instead of storing elements in this
queue, Nikolaev stores them in a separate fixed-size array,
maintaining two queues of 32-bit indices of free cells for
Enqueue(. .) and of occupied cells for Dequeue ().

At last, other techniques, such as flat combining [9], can be
used to construct an efficient queue. The fastest implemen-
tation that leverages flat combining is proposed by Fatourou
and Kallimanis [4]; later works [18, 27] show that their solu-
tion scales much worse than LCRQ.

7 Discussion

In this work, we present the LPRQ concurrent queue algo-
rithm, a portable modification of the famous LCRQ design
that originally relies on the CAS2 primitive, which is unavail-
able in most modern programming languages. Our design
shows the same performance as the original LCRQ algorithm
and improves the existing solutions that do not leverage CAS2
by up to 1.6%. We believe that our work will influence the
community to include the LPRQ design in the standard li-
braries of modern programming languages and frameworks.

24

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

References

[1] Guy E Blelloch, Perry Cheng, and Phillip B Gibbons. 2003. Scalable
room synchronizations. Theory of computing systems 36, 5 (2003),
397-430.

Robert Colvin and Lindsay Groves. 2005. Formal verification of an
array-based nonblocking queue. In 10th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS’05). IEEE, 507—
516.

[3] Jason Evans, Mozilla Foundation, and Facebook Inc. 2016. jemalloc
memory allocator. http://jemalloc.net/

Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the
Combining Synchronization Technique. SIGPLAN Not. 47, 8 (feb 2012),
257-266. https://doi.org/10.1145/2370036.2145849

Steven Feldman and Damian Dechev. 2015. A Wait-Free Multi-
Producer Multi-Consumer Ring Buffer. SIGAPP Appl. Comput. Rev. 15,
3 (oct 2015), 59-71. https://doi.org/10.1145/2835260.2835264

Eric Freudenthal and Allan Gottlieb. 1991. Process coordination with
fetch-and-increment. ACM SIGOPS Operating Systems Review 25, Spe-
cial Issue (1991), 260-268.

Allan Gottlieb, Boris D Lubachevsky, and Larry Rudolph. 1983. Basic
techniques for the efficient coordination of very large numbers of
cooperating sequential processors. ACM Transactions on Programming
Languages and Systems (TOPLAS) 5, 2 (1983), 164-189.

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical
Multi-word Compare-and-Swap Operation. In Distributed Computing,
Dahlia Malkhi (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
265-279.

Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat
Combining and the Synchronization-Parallelism Tradeoff. In Proceed-
ings of the Twenty-Second Annual ACM Symposium on Parallelism in
Algorithms and Architectures (Thira, Santorini, Greece) (SPAA ’10).
Association for Computing Machinery, New York, NY, USA, 355-364.
https://doi.org/10.1145/1810479.1810540

Moshe Hoffman, Ori Shalev, and Nir Shavit. 2007. The Baskets Queue.
In Principles of Distributed Systems, Eduardo Tovar, Philippas Tsigas,
and Hacéne Fouchal (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 401-414.

Amazon Web Services Inc. 2021. Introducing Amazon EC2 Céi in-
stances. https://aws.amazon.com/about-aws/whats-new/2021/10/
amazon-ec2-c6i-instances/

Alex Kogan and Erez Petrank. 2011. Wait-Free Queues with Multiple
Enqueuers and Dequeuers. SIGPLAN Not. 46, 8 (feb 2011), 223-234.
https://doi.org/10.1145/2038037.1941585

Alexander Krizhanovsky. 2013. Lock-Free Multi-Producer Multi-
Consumer Queue on Ring Buffer. Linux 7. 2013, 228, Article 4 (apr
2013).

Edya Ladan-Mozes and Nir Shavit. 2004. An Optimistic Approach to
Lock-Free FIFO Queues. In Distributed Computing, Rachid Guerraoui
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 117-131.
Maged M Michael. 2004. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and Distributed
Systems 15, 6 (2004), 491-504.

Maged M Michael and Michael L Scott. 1998. Nonblocking algorithms
and preemption-safe locking on multiprogrammed shared memory
multiprocessors. J. Parallel and Distrib. Comput. 51, 1 (1998), 1-26.
Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. 2005. Using
Elimination to Implement Scalable and Lock-Free FIFO Queues. In
Proceedings of the Seventeenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures (Las Vegas, Nevada, USA) (SPAA ’05).
Association for Computing Machinery, New York, NY, USA, 253-262.
https://doi.org/10.1145/1073970.1074013

Adam Morrison and Yehuda Afek. 2013. Fast Concurrent Queues
for X86 Processors. SIGPLAN Not. 48, 8 (feb 2013), 103-112. https:
//doi.org/10.1145/2517327.2442527

[2

—

[4

—

5

—

(6

—

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

http://jemalloc.net/
https://doi.org/10.1145/2370036.2145849
https://doi.org/10.1145/2835260.2835264
https://doi.org/10.1145/1810479.1810540
https://aws.amazon.com/about-aws/whats-new/2021/10/amazon-ec2-c6i-instances/
https://aws.amazon.com/about-aws/whats-new/2021/10/amazon-ec2-c6i-instances/
https://doi.org/10.1145/2038037.1941585
https://doi.org/10.1145/1073970.1074013
https://doi.org/10.1145/2517327.2442527
https://doi.org/10.1145/2517327.2442527

PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

[19] Francesco Nigro. 2019. MpmcUnboundedXaddAr-
rayQueue. https://github.com/JCTools/JCTools/blob/
6966302c5657b22400dbebe9e54019f739eca03e/jctools-core/src/main/
java/org/jctools/queues/MpmcUnboundedXaddArrayQueue.java

[20] Ruslan Nikolaev. 2019. A Scalable, Portable, and Memory-Efficient
Lock-Free FIFO Queue. In 33rd International Symposium on Distributed
Computing, DISC 2019, October 14-18, 2019, Budapest, Hungary (LIPIcs,
Vol. 146), Jukka Suomela (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 28:1-28:16. https://doi.org/10.4230/LIPlcs.DISC.2019.28

[21] Or Ostrovsky and Adam Morrison. 2020. Scaling concurrent queues
by using HTM to profit from failed atomic operations. In Proceedings
of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 89-101.

[22] Pedro Ramalhete. 2016. FAAArrayQueue - MPMC lock-free queue.
http://concurrencyfreaks.blogspot.com/2016/11/faaarrayqueue-
mpmc-lock-free-queue-part.html

[23] Pedro Ramalhete and Andreia Correia. 2017. Brief announcement:
Hazard eras-non-blocking memory reclamation. In Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and Architectures.
367-369.

[24] Raed Romanov and Nikita Koval. 2022. LPRQ Concurrent Queue Algo-

rithm Evaluation. https://doi.org/10.5281/zenodo0.7337237

Philippas Tsigas and Yi Zhang. 2001. A Simple, Fast and Scalable Non-

Blocking Concurrent FIFO Queue for Shared Memory Multiprocessor

Systems. In Proceedings of the Thirteenth Annual ACM Symposium on

Parallel Algorithms and Architectures (Crete Island, Greece) (SPAA '01).

Association for Computing Machinery, New York, NY, USA, 134-143.

https://doi.org/10.1145/378580.378611

Dmitry Vyukov. 2021. Bounded MPMC queue. https://www.1024cores.

net/home/lock-free-algorithms/queues/bounded-mpmc-queue

Chaoran Yang and John Mellor-Crummey. 2016. A Wait-Free Queue

as Fast as Fetch-and-Add. SIGPLAN Not. 51, 8, Article 16 (feb 2016),

13 pages. https://doi.org/10.1145/3016078.2851168

[25

[

[26

=

[27

—

25

Raed Romanov and Nikita Koval

https://github.com/JCTools/JCTools/blob/6966302c5657b22400dbebe9e54019f739eca03e/jctools-core/src/main/java/org/jctools/queues/MpmcUnboundedXaddArrayQueue.java
https://github.com/JCTools/JCTools/blob/6966302c5657b22400dbebe9e54019f739eca03e/jctools-core/src/main/java/org/jctools/queues/MpmcUnboundedXaddArrayQueue.java
https://github.com/JCTools/JCTools/blob/6966302c5657b22400dbebe9e54019f739eca03e/jctools-core/src/main/java/org/jctools/queues/MpmcUnboundedXaddArrayQueue.java
https://doi.org/10.4230/LIPIcs.DISC.2019.28
http://concurrencyfreaks.blogspot.com/2016/11/faaarrayqueue-mpmc-lock-free-queue-part.html
http://concurrencyfreaks.blogspot.com/2016/11/faaarrayqueue-mpmc-lock-free-queue-part.html
https://doi.org/10.5281/zenodo.7337237
https://doi.org/10.1145/378580.378611
https://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue
https://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue
https://doi.org/10.1145/3016078.2851168

The State-of-the-Art LCRQ Concurrent Queue Algorithm Does NOT Require CAS2 PPoPP’23, February 25 — March 1, 2023, Montreal, Canada

A Modified CRQ with no CAS2 in Dequeue()

1 // initially 35 fun Dequeue(): E = while(true) {

2 Head = R; Tail =R 36 h := Head.FAA(1)

3 37 cycle :=h / R; i :=h %R

+ fun Enqueue(item: E): Bool = while (true) { 38 while(true) { // try update the cell state

5 t := Tail.FAA(1) 39 <safe, epoch> := A[i].SafeAndEpoch

6 if (Closed) return false 40 value := A[i].Value

7 cycle :=t / R; i :=t % R 41 if (<safe, epoch> != A[i].SafeAndEpoch)

8 12 continue // inconsistent view of the cell
9 <safe, epoch> := A[i].SafeAndEpoch 43

10 value := A[i].Value 44 when { // transitions according to Figure 6
11 45 epoch == cycle && value != null -> {

12 if (value == null && // the cell is empty 46 // dequeue transition

13 // and enqueue is not overtaken 47 ALil.Value := null

14 epoch < cycle && (safe || Head <= t)) { 18 return value

15 if (ALi].CAS2(<<safe, epoch>, null>, 49 3}

16 <<true, cycle>, item>)) 50 epoch <= cycle && value == null -> {

17 return true 5 // empty transition

1
18 3} 52 if (AL[i].SafeAndEpoch.CAS(<safe, epoch>,
19 // is the queue full? 53 <safe, cycle>))
20 if (t - Head >= R) { 54 break
21 Closed := true 55 }
22 return false 56 epoch < cycle && value != null -> {
23 } 57 // unsafe transition
24 %} 58 if (A[i].SafeAndEpoch.CAS(<safe, epoch>,
25 59 <false, epoch>))
26 60 break
27 61 }
28 62 // epoch > cycle
29 63 else -> break // deq is overtaken
30 64 }
31 65 }
32 66 // is the queue empty?
33 67 if (Tail <= h + 1) return null
34 68)

Listing 5. Modification of the CRQ algorithm [18] without CAS2 in Dequeue (). The key differences are highlighted in yellow.

B Additional Experiments
—4—lcrq —$— Iprq

_ Enqueue-dequeue pairs benchmark - 1:1 producer-consumer benchmark

[

5 107 % 12

5 g/ &

£ 8 210

g o 5 o]

o o 44

s 24 =

o o 2]

o 0% i i i i i i i 3o ‘ | | | |
1 2 4 8 16 32 64 128 2 4 8 16 32 64 128

Threads Threads

. 2:1 producer-consumer benchmark . 1:2 producer-consumer benchmark

O 124 (9]

2 2

& 101 s 151

C s 'Z

§ 6l %10—

& 4 b

n v 4

s 5l g5

© o

3 ol~ | | | | — 3 o0~ | | | | —
3 6 12 24 48 96126 3 6 12 24 48 96126

Threads Threads

Figure 9. Numbers of L1d cache-misses per element transfer for LPRQ and LCRQ. Lower is better.

26

	Abstract
	1 Introduction
	2 Preliminaries
	3 The LPRQ Algorithm
	3.1 The LCRQ Overview
	3.2 The PRQ Algorithm

	4 Correctness
	5 Evaluation
	6 Related Work
	7 Discussion
	References
	A Modified CRQ with no CAS2 in Dequeue()
	B Additional Experiments

