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ABSTRACT
Several classic problems in graph processing and computational

geometry are solved via incremental algorithms, which split com-

putation into a series of small tasks acting on shared state, which

gets updated progressively. While the sequential variant of such

algorithms usually specifies a fixed (but sometimes random) order

in which the tasks should be performed, a standard approach to

parallelizing such algorithms is to relax this constraint to allow

for out-of-order parallel execution. This is the case for parallel

implementations of Dijkstra’s single-source shortest-paths (SSSP)

algorithm, and for parallel Delaunay mesh triangulation. While

many software frameworks parallelize incremental computation

in this way, it is still not well understood whether this relaxed

ordering approach can still provide any complexity guarantees.

In this paper, we address this problem, and analyze the efficiency

guarantees provided by a range of incremental algorithms when

parallelized via relaxed schedulers. We show that, for algorithms

such as Delaunay mesh triangulation and sorting by insertion,

schedulers with a maximum relaxation factor of k in terms of the

maximum priority inversion allowed will introduce a maximum

amount of wasted work ofO(logn poly (k)),where n is the number

of tasks to be executed. For SSSP, we show that the additional work

is O( poly (k)dmax /wmin ), where dmax is the maximum distance

between two nodes, and wmin is the minimum such distance. In

practical settings where n ≫ k , this suggests that the overheads of
relaxation will be outweighed by the improved scalability of the

relaxed scheduler. On the negative side, we provide lower bounds

showing that certain algorithms will inherently incur a non-trivial

amount of wasted work due to scheduler relaxation, even for rela-

tively benign relaxed schedulers.
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1 INTRODUCTION
Several classic problems in graph processing and computational

geometry can be solved incrementally: algorithms are structured as

a series of tasks, each of which examines a subset of the algorithm
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state, performs some computation, and then updates the state. For

instance, in Dijkstra’s classic graph single-source shortest paths

(SSSP) algorithm [18], the state consists of the current distance

estimates for each node in the graph, and each task corresponds to

a node “relaxation," which may update the distance estimates of the

node’s neighbors. In the case of the classic sequential variant, the

order inwhich tasks get executed is dictated by the sequence of node

distances. At the same time, many other incremental algorithms,

such as Delaunay mesh triangulation, assume arbitrary (or random)

orders on the tasks to be executed, and can even provide efficiency

guarantees under such orderings [10].

A significant amount of attention has been given to parallelizing
such incremental iterative algorithms, e.g. [10, 16, 17, 20, 28]. One

approach has been to study the dependence structure of such al-

gorithms, proving that, in many cases, the dependency chains are

shallow. This can be intuitively interpreted as proving that such

algorithms should have significant levels of parallelism. One way

to exploit this fine-grained parallelism, e.g. [9, 33] has been to care-

fully split the execution into task prefixes of limited length, and

to parallelize the execution of each prefix efficiently. While this

approach can be efficient, it does require an understanding of the

workload and task structure, and may not be immediately appli-

cable to algorithms where the task ordering is dependent on the

input.

An alternative approach has been to employ scalable data struc-

tures with only ensure relaxed priority order to schedule task-based
programs. The idea can be traced back to Karp and Zhang [24], who

studied parallel backtracking in the PRAM model, and noticed that,

in some cases, the scheduler can relax the strict order induced by

the sequential algorithm, allowing tasks to be processed specula-

tively ahead of their dependencies, without loss of correctness. For

instance, when parallelizing SSSP, e.g. [5, 28, 30], the scheduler may

retrieve vertices in arbitrary order without breaking correctness, as

the distance at each vertex is guaranteed to eventually converge to

the minimum. However, there is intuitively a trade-off between the

performance gains arising from using scalable relaxed schedulers,

and the loss of determinism and the possible wasted work due to

having to re-execute speculative tasks.

This approach is quite popular in practice, as several efficient

relaxed schedulers have been proposed [4–6, 21, 28, 29, 31, 32, 35],

which can attain state-of-the-art results for graph processing and

machine learning [20, 28], and even have hardware implementa-

tions [23]. At the same time, despite showing good empirical per-

formance, this approach does not come with analytical bounds:

in particular, for most known algorithms, it is not clear how the

relaxation factor in the scheduler affects the total work performed

by the parallel algorithm.

We address this question in this paper. Roughly, we show under

analytic assumptions that, for a set of fundamental algorithms

including parallel Dijkstra’s and Delaunay mesh triangulation, the

https://doi.org/110.1145/3323165.3323201
https://doi.org/110.1145/3323165.3323201


extra work engendered by scheduler relaxation can be negligible

with respect to the total number of tasks executed by the sequential

algorithm. On the negative side, we show that relaxation does not

come for free: we can construct worst-case instances where the cost

of relaxation is asymptotically non-negligible, even for relatively

benign relaxed schedulers.

We model the relaxed execution of incremental algorithms as

follows. The algorithm is specified as an ordered sequence of tasks,

whichmay ormay not have precedence constraints. The algorithm’s

execution is modeled as an interaction between a processor, which
can execute tasks, modify state, and possibly create new tasks, and

a scheduler, which stores the tasks in a priority order specified by

the algorithm. At each step, the processor requests a new task from

the scheduler, examines whether the task can be processed (i.e.,

that all precedence constraints are satisfied), and then executes

the task, possibly modifying the state and inserting new tasks as a

consequence.

An exact scheduler would return tasks following priority or-

der. Since ensuring such strict order semantics is known to lead to

contention and poor performance [1], practical scalable schedulers

often relax the priority order in which tasks are returned, up to

some constraints. For generality, in this paper, we assume when

proving performance upper bounds that the scheduler may in fact

be adversarial—actively trying to get the algorithm to waste steps,

up to some natural rank inversion and fairness constraints. Specifi-
cally, the two natural constraints we enforce on the scheduler are

on 1) the maximum rank inversion between the highest priority

task present and the rank of the task returned, and on 2) fairness, in
terms of the maximum number of schedule steps for which the task

of highest priority may remain unscheduled. For convenience, we

upper bound both these quantities by a parameter k , which we call

the relaxation factor of the scheduler. Simply put, a k-relaxed sched-
uler must 1) return one of the k highest-priority elements in every

step; and 2) return a task at the latest k steps after it has become the

highest-priority task available to the scheduler. We note that real

schedulers enforce such constraints either deterministically [35] or

with high probability [2–4].

A significant limitation of the above model is that it is sequential,
as it assumes a single processor which may execute tasks. While

our results will be developed in this simplified sequential model,

we also discuss a parallel version of the model in Section 4.

It is natural to ask whether incremental algorithms can still

provide any guarantess on total work performed under k−relaxed
schedulers. Additional work may arise due to relaxation for two

reasons. The first is if the parallel execution enforces ordering

constraints between data-dependent tasks: for instance, when exe-

cuting a graph algorithm, the task corresponding to a node u may

need to be processed before the task corresponding to any neighbor
which has higher priority in the initial node ordering. A second

cause for wasted work is if a task may need to be re-executed once

the state is updated: this is the case when running parallel SSSP:

due to relaxation, a node may be speculatively relaxed at a distance

that is higher than its optimal distance from the source, leading it

to be relaxed several times. We note that neither phenomenon may

occur when the priority order is strict—since the top priority task

cannot have preceding constraints nor need to be re-executed—but

are inherent in parallel executions.

A trivial upper bound on wasted work for an algorithmwith total

workW under a k-relaxed scheduler would be O(kW )—intuitively,
in the worst case the scheduler may return k tasks before the top

priority one, which can always be executed without violating con-

straints. The key observation we make in this work is that, because

of their local dependency structure, some popular incremental al-

gorithms will incur significantly less overhead due to out-of-order

execution.

More precisely, for incremental algorithms, such as Delaunay

mesh triangulation and sorting by insertion, we show that the ex-

pected overhead of execution via a k-relaxed scheduler is

O(polyk logn), where n is the number of tasks the sequential vari-

ant of the algorithm executes. We exploit the following properties of

incremental algorithms, shown in [10]: The probability that the task

at position j is dependent on the task at position i < j depends only
on the tasks at positions 1, 2, ..., i and j, and assuming a random

order of tasks, this probability is upper bounded by O(1/i). While

the technical details are not immediate, the argument boils down

to bounding, for each top-priority task, the number of dependent
tasks which may be returned by the scheduler while the task is still

in the scheduler queue.

For SSSP, which does not have a dependency structure but may

have to re-execute tasks, we use a slightly different approach, based

on ∆-stepping, [27]. We bound the total overhead of relaxation

to O(polyk dmax/wmin), where dmax is the maximum distance be-

tween two nodes, andwmin is the minimum such distance. While

this overhead may in theory be arbitrarily large, depending on the

input, we note that for many graph models, this overhead is small.

(For example, for ErdÃűs-Renyi graphs with constant weights, the

overhead is O(polyk logn).)
It is interesting to interpret these overheads in the context of

practical concurrent schedulers such asMultiQueues [20, 29], where

the relaxation factor k is proportional to the number of concurrent

processors p, up to logarithmic factors. Since in most instances the

size of the number of tasks n is significantly larger than the number

of available processors p, the overhead of relaxation can be seen to

be comparatively small. This observation has been already made

empirically for specific instances, e.g. [25]; our analysis formalizes

this observation in our model.

On the negative side, we also show that the overhead of relax-

ation is non-negligible in some instances. Specifically, we exhibit

instances of incremental algorithms where the overhead of relaxed

execution is Ω(logn). Interestingly, this lower bound does not re-

quire the scheduler to be adversarial: we show that it holds even in

the case of the relatively benign MultiQueue scheduler [4, 29].

Related Work. Parallel scheduling of iterative algorithms is a vast

area, so a complete survey is beyond our scope. We begin by noting

that our results are not relevant to standard work-stealing sched-

ulers [11, 12] since such schedulers do not provide any guarantees

in terms of the rank of elements removed.1

An early instance a relaxed scheduler is in the work of Karp and

Zhang [24], for parallelizing backtracking in the PRAMmodel. This

area has recently become very active, and several relaxed scheduler

1
We are aware of only one previous attempt to add priorities to work-stealing sched-

ulers [22], using a multi-level global queue of tasks, partitioned by priority. This

technique is different, and provides no work guarantees.



designs have been proposed, trading off relaxation and scalability,

e.g. [4–6, 21, 28, 29, 31, 32, 35]. In particular, software packages for

graph processing [28] and machine learning [20] implement such

relaxed schedulers.

Our work is related to the line of research by Blelloch et al. [7–

10, 34], as well as [13, 14, 19], which examines the dependency

structure of a broad set of iterative/incremental algorithms and

exploit their inherent parallelism for fast implementations. We

benefit significantly from the analytic techniques introduced in this

work.

We note however some important differences between these

results and our work. The first difference concerns the scheduling

model: references such as [9, 10, 34] assume a synchronous PRAM

execution model, and focus on analyzing the maximum dependency

length of algorithms under random task ordering, validating the

results via concurrent implementations. By contrast, we employ

a relaxed scheduling model, that models data processing systems

based on relaxed priority schedulers, such as [28], and provide work

bounds for such executions. Although superficially similar, our

analysis techniques are different from those of e.g. [9, 10] since our

focus is not on the maximum dependency depth of the algorithms,

but rather on the number of local dependencies which may be

exploited by the adversarial scheduler to cause wasted work. We

emphasize that the fact that the algorithms we consider may have

low dependency depth does not necessarily help, since a sequential

algorithm could have low dependency depth and be inefficiently

executable by a relaxed scheduler: a standard example is when

the dependency depth is low (logarithmic), but each “level" in a

breadth-first traversal of the dependency graph has high fanout.

This has low depth, but would lead to high speculative overheads.

(In practice, greedy graph coloring on a dense graph would lead to

such an example.)

A second difference concerns the interaction between the sched-

uler and the algorithm. The scheduling mechanisms proposed in

e.g. [9] assume knowledge about the algorithm structure, and in

particular adapt the length of the prefix of tasks which can be sched-

uled at any given time to the structure of the algorithm. In contrast,

we assume a basic scheduling model, which may even be adversar-

ial (up to constraints), and show that such schedulers, which relax

priority order for increased scalability, inherently provide bounded

overheads in terms of wasted work due to relaxation.

Finally, we note that references such as [9, 10] focus on algo-

rithms which are efficient under random orderings of the tasks. In

the case of SSSP, we show that relaxed schedulers can efficiently

execute algorithms which have a fixed optimal ordering.

Another related reference is [3], in which we introduced the

scheduling model used in this paper, related it to MultiQueue sched-

ulers [29], and analyzed the work complexity of some simple itera-

tive greedy algorithms such as maximal independent set or greedy

graph coloring. We note the technique introduced in this previous

paper only covered a relatively limited set of iterative algorithms,

where the set of tasks are defined and fixed in advance, and focused

on the complexity of greedy maximal independent set (MIS) under

relaxed scheduling. In contrast, here we consider more complex

incremental algorithms, in which tasks can be added and modified

dynamically. Moreover, as stated, here we also cover algorithms

such as SSSP, in which computation should follow a fixed sequential

task ordering, as opposed to a random ordering which was the case

for greedy MIS.

2 RELAXED SCHEDULERS: THE
SEQUENTIAL MODEL

We begin by formally introducing our sequential model of re-

laxed priority schedulers. We represent a priority scheduler as

a relaxed ordered set data structure Qk , where the integer parame-

ter k is the relaxation factor. A relaxed priority scheduler contains

< task,priority > pairs and supports the following operations:

(1) Qk .Empty(), returns true if Qk is empty, and false other-
wise.

(2) ApproxGetMin(), returns a < task,priority > pair if one is

available, without deleting it.

(3) DeleteTask(task), removes specified task from the scheduler.

This is used to remove a task returned by ApproxGetMin(),
if applicable.

(4) Insert(< task,priority >), inserts a new task-priority pair

in Qk .

We denote the rank (in Qk ) of the task returned by the t-th
ApproxGetMin() operation by rank(t), and call it the rank of a task
returned on step t . For a task u, let inv(u) be the number of inver-

sions experienced by task u between the step when u becomes the

highest priority task in Qk and the step when task u is returned by

the scheduler. That is, inv(u)+ 1 is the number of ApproxGetMin()
operations needed for the highest priority task u to be scheduled.

Rank and Fairness Properties. The relaxed priority schedulersQk
we consider will enforce the following properties:

(1) RankBound : at any time step t , rank(t) ≤ k .
(2) Fairness: for any task u, inv(u) ≤ k − 1.

Priority schedulers such as k-LSM [35] enforce these properties

deterministically, where k is a tunable parameter. We have shown

in previous work that the MultiQueue [29] scheduler ensures these

properties both in sequential and concurrent executions [2, 4] with

parameterk = O(q logq), with exponentially low failure probability

in q, the number of queues.

Next, we describe how incremental algorithms can be imple-

mented in this context.

3 INCREMENTAL ALGORITHMS
3.1 General Definitions
We assume a model of incremental algorithms which execute a set

of tasks iteratively, one by one, and where each task incrementally

updates the algorithm’s state. For example, in incremental graph

algorithms, the shared state corresponds to a data structure storing

the graph nodes, edges, and meta-data corresponding to nodes.

Tasks usually correspond to vertex operations, and are usually in-

serted and executed in some order, given by the input. If this task

order is random, we say that the incremental algorithm is random-

ized. We will consider both randomized incremental algorithms,

where each task has a priority based on the random order, and de-

terministic ones, where the order is fixed. Using an exact scheduler



corresponds to executing tasks in the same order as the sequen-

tial algorithm, while using a relaxed scheduler allows out-of-order

execution of tasks.

Definition. More formally, randomized incremental algorithms

such as Delaunay triangulation and comparison sorting with via

BST insertion can be modelled as follows:

We are given n tasks, which must be executed iteratively in

some (possibly random) order. Initially, each task u is assigned a

unique label ℓ(u). For instance, this label can be based on a random

permutation of n given tasks, π . That is, for task u, ℓ(u) = i , iff
π (i) = u. A lower label can be equated with higher priority. Each

task performs some computation and updates the algorithm state. In

the case of Delaunay triangulation, tasks update the triangle mesh,

while in the case of Comparison Sorting tasks modify the BST

accordingly. Generic sequential pseudocode is given in Algorithm

1. We note that a similar generic algorithm was presented in [3] for

parallelizing greedy iterative algorithms.

Data: Sequence of tasks V = (v1,v2, ...,vn ), in decreasing

priority order.

1 // Q is an exact priority queue.

2 Q ← tasks of V with priorities

3 for each step t do
4 // remove the task with highest priority.

5 vt ← Q .DeleteMin()

6 Process(vt )

7 // stop if Q is empty.

8 if Q .empty() then
9 break

10 end
11 end
Algorithm 1: General Framework for incremental algorithms.

When using a relaxed priority Qk instead of an exact priority

queueQ , one issue is the presence of inter-task dependencies. These

dependencies are specified by the algorithm, and are affected by the

permutation of the tasks: For comparison sorting, a task depends

on all of its ancestor tasks in the resulting BST, while for Delaunay

Triangulation there is a dependency between two tasks if right

before either one is added, their encroaching regions overlap by at

least an edge in the mesh. (Due to space constraints, we will assume

the reader is familiar with terminology related to Delaunay mesh

triangulation. We direct the reader to e.g. [10] for an overview of

sequential and parallel algorithms for this problem.)

If task v depends on task u and ℓ(u) < ℓ(v), then task v can not

be processed before task u. We call task u an ancestor of task v in

this case. We assume that the task returned by the relaxed scheduler

can be processed only if all of its ancestors are already processed.

Pseudocode is given in Algorithm 2.

Observe that the For loop runs for exactly n steps in the exact

case, but it may require extra steps in the relaxed case. We are

interested in upper bounding the number of extra steps, since this

is a measure of the additional work incurred when executing via

the relaxed priority queue. In order to do this, we need to specify

some properties for the dependencies of the incremental algorithms

we consider.

Data: Sequence of tasks V = (v1,v2, ...,vn ), in decreasing

priority order.

1 // Qk is a relaxed priority queue.

2 Qk ← tasks of V with priorities for each step t do
3 // get the task with highest priority from Qk.

4 vt ← Qk .GetMin()

5 // check if vt has no dependencies.

6 if CheckDependencies(vt ) then
7 Qk .Delete(vt )

8 Process(vt )

9 end
10 // stop if Q is empty.

11 if Qk .empty() then
12 break
13 end
14 end
Algorithm 2: General Framework for executing incremental al-

gorithms using relaxed priority schedulers.

Denote by pi j be probability that task with label j depends on
task with label i . We require the incremental algorithms to have

the following properties:

(1) for each pair of task indices i < j, pi j ≤ C/i , where C is

large enough constant which depends on the incremental

algorithm.

(2) for each pair i < j, pi j depends only on tasks with labels

1, ..., i and j.

The fact that comparison sorting and Delaunay triangulation

have the above properties has already been shown in [10]. More

precisely, for comparison sorting, these properties are proved in

[10, Section 3]. In the case of Delaunay triangulation, property (2) is

showed in the same paper [10, Section 4], while property (1) follows

from [10, Theorem 4.2].

3.2 Analysis
In this subsection, we prove an upper bound on the number of extra

steps required by our generic relaxed framework for executing in-

cremental algorithms. As a first step, we will derive some additional

properties of the relaxed scheduler.

Let Ai j be the event that task with label at least j is returned by

the scheduler before taskwith label i is processed by the incremental

algorithm. Observe that if the scheduler returns the highest priority

task, then this task can always be processed by the incremental

algorithm, since this task is guaranteed to have no ancestors.

Lemma 3.1. If j − i ≥ 2k2, Pr [Ai j ] = 0.

Proof. For labels j − i ≥ 2k2, let u be the task with label i and
letv be some task with label at least j . Also, let t be the earliest step
at which rank of u is at most k . This means that at time step t − 1,
rank(u) > k and by rank property no tasks with labels larger than

i were scheduled at time steps 1, 2, ..., t − 1. Thus, we have that at
time step t , rank(v) > j − i ≥ 2k2. Because of the fairness property
it takes k steps to remove the task with highest priority(lowest

label), so task u will be returned by the scheduler and subsequently

will be processed by the algorithm no later than at time step t + k2.



Rank of v can decrease by at most 1 after each step, thus at time

step t + k2, rank(v) > 2k2 − k2 ≥ k . Hence, v can be returned

by the scheduler only after time step t + k2 and this gives us that

Pr [Ai j ] = 0. □

For any label i , let Ri be the number of times scheduler returns

task with label greater than i (some task can be counted multiple

times), before task with label i is processed by the algorithm. The

following holds:

Lemma 3.2. For any i , Ri ≤ k2.

Proof. Let u be the task with label i . Also, let t be the earliest
step at which rank of u is at most k .

This means that at time step t − 1, rank(u) > k and by rank

property no task with label at least i can be returned by the sched-

uler at time steps 1, 2, ..., t − 1. Because of the fairness property it

takes k steps to remove the task with highest priority(lowest label),

so task u will be returned by the scheduler and subsequently will

be processed by the algorithm no later than at time step t + k2.
Trivially, the total number of times some task with label at least

i(or in fact any label) can be returned by the scheduler before the

time step t + k2 is k2. □

With the above lemmas in place we can proceed to prove an

upper bound for the extra number of steps.

Theorem 3.3. The expected number of extra steps is upper bounded
by O(poly(k) logn).

Proof. Let Di j be the event that task with label j depends on
task with label i < j . From the properties of incremental algorithms

we consider, we get that Pr [Di j ] = pi j ≤ C/i .
Recall that for i < j, Ai j is the event that task with label at

least j is returned by relaxed scheduler before task with label i
is processed by the algorithm. Observe that at Ai j and Di j are

independent. Since, Di j depends only on the initial priorities of the

tasks and does not depend on the relaxed scheduler. On the other

hand, it is easy to see that Pr [Ai j |Di j ] = Pr [Ai j |¬Di j ].

Every extra step is caused by a task with an ancestor which is not

processed. Let v be the label of the task we are not able to process

because of dependencies and let u be the highest priority ancestor

task ofv . Ifu also has an unprocessed ancestor , we repeat the same

step. Eventually we can recurse to the pair of tasks (u ′,u ′′) such
that u ′ is highest priority ancestor of u ′′ and all ancestors of u ′ are
already processed. Let ℓ(u ′) = i and ℓ(u ′′) = j , we charge the extra
step to the pair of labels (i, j).

Note that pair of labels (i, j) can be charged only if Di j and Ai j .
Let Li j be the event that (i, j) is charged at least once. That is, Li j
will happen if and only if Di j and Ai j happen. Also it is easy to

see that the total number of times (i, j) can be charged is upper

bounded by Ri (Recall 3.2).

E[#extrasteps] ≤
n−1∑
i=1

n∑
j=i+1

Pr [Li j ]Ri

Lemma 3.2
≤

n−1∑
i=1

n∑
j=i+1

Pr [Di j ]Pr [Ai j ]k
2

≤

n−1∑
i=1

n∑
j=i+1

C

i
Pr [Ai j ]k

2

≤

n−1∑
i=1

i+2k2∑
j=i+1

C

i
Pr [Ai j ]k

2 +

n−1∑
i=1

n∑
j=i+2k2+1

C

i
Pr [Ai j ]k

2

Lemma 3.1
=

n−1∑
i=1

i+2k2∑
j=i+1

C

i
Pr [Ai j ]k

2

≤

n−1∑
i=1

C

i
2k4 ≤ O(k4 logn). (1)

□

4 RELAXED SCHEDULERS: THE
TRANSACTIONAL MODEL

We now consider an alternative model where tasks are executed

concurrently, each as part of a (software or hardware) transaction.

This is unlike our standard model, which is entirely sequential. It is

important to note that the correspondence between the two models

is not one-to-one, since in this concurrent model transactions may

abort due to data conflicts. More precisely, we assume that the algo-

rithm consists of n tasks, each corresponding to some transaction.

Transactions are scheduled by an entity called the the transactional
scheduler. Every task u has label ℓ(u), where a lower label corre-
sponds to higher priority. In transactional model, unlike sequential

model, we assume that transaction aborts if and only if it is exe-

cuted concurrently with a transaction it depends on. In other words,

dependencies create data conflicts for concurrent transactions and

conflicts are resolved in favor of higher priority transaction. An-

other crucial difference is that in transactional model we assume an

upper bound on the interval contention. That is, each transaction

can be concurrent with at most C transactions in total(during one

execution). This is needed because, If u is the transaction with high-

est priority and v is the transaction with second highest priority,

which depends on u, then u can causev to be aborted large number

of times, even in the case of exact scheduler.

Properties of the transactional scheduler. For transaction u, let
inv(u) be the number of transactions returned by transactional
scheduler after the point u becomes the highest priority transaction

available to the scheduler and before it is returned by the scheduler.

We require transactional scheduler to have the following properties,
which are similar to the properties in sequential model:

(1) RankBound: transaction u with label ℓ(u) is available to the

transactional scheduler only after at least ℓ(u)−k transactions

with higher priority than u are executed successfully.

(2) Fairness: For any transaction u, inv(u) ≤ k − 1.



Next, we derive concurrent versions of lemmas proved in the

sequential setting. Let Ai j be the event that transaction with label

at least j is executed concurrently with the transaction with label

i < j or returned by the transactional scheduler before the transac-
tion with label i . Observe that if scheduler returns highest priority
transaction, then this transaction will never abort.

Lemma 4.1. If j − i ≥ 2k(C + k), Pr [Ai j ] = 0.

Proof. Let u be the transaction with label i and let v be a trans-

action with label at least j . Consider first point whenu is available to

the scheduler. Observe that at this point, no transactions with label

greater than i are available to the scheduler and by the RankBound
property, there are at most k − 1 transactions with higher priority

than u which are left to be processed. By Fairness property, there
can be only k−1 transactions scheduled before the transaction with

highest priority. Once the highest priority transaction is scheduled,

there can be at most C transactions executing concurrently with it.

Thus, the total number of transactions which were running at some

point during period between u became available to the scheduler

and was executed successfully is at most k(C + k). We get that at

the point u has finished successful execution, v is not available to

the scheduler, since the total number of successful transactions is

at most ℓ(u) + k(C + k) < ℓ(v) − k . Thus, Pr [Ai j = 0]. □

Let u be the task with label i . Let Ri be the total number of times

scheduler returns transaction with label greater than i before it

returns the transaction u, plus the number of transaction which are

concurrent with u at some point.

Lemma 4.2. For any transaction u with ℓ(u) = i , Ri ≤ k(k +C).

Proof. As in the proof of the previous lemma, we can show that

the total number of transactions which were running at some point

during period betweenu became available to the scheduler and was

executed successfully is at most k(C +k), this trivially gives us that

Ri ≤ k(k +C). □

Now, we are ready to prove the following theorem:

Theorem 4.3. The expected number of transactions aborted by an
incremental algorithm is at most O(k2(C + k)2 logn)

Proof. Let Di j be event that the transaction(task) with label

j depends on the transaction(task) with label i < j. Note that

transaction i can abort transaction j if and only if Ai j and Di j .

In transactional model, we charge the aborted transaction to the

transaction which caused abort. Each transaction can be charged at

most Ri ≤ k(k +C) times. Observe that Ri is a loose upper bound
on the number of times transaction can be charged, since charge

to transaction u can be caused by a concurrent transaction only.

With these properties in place, we can follow exactly the same

steps as in the proof of Theorem 3.3 to show that The expected

number of transactions aborted by an incremental algorithm is at

most

∑n−1
i=1

∑n
j=i+1 Pr [Ai j and Di j ]Ri = O(k

2(C + k)2 logn). □

5 LOWER BOUND ONWASTEDWORK
In this section, we prove the lower bound on the cost of relaxation

in terms of additional work. We emphasize the fact that this argu-

ment does not require the scheduler to be adversarial: in fact, we

will prove that a fairly benign relaxed priority scheduler, the Mul-

tiQueue [29], can cause incremental algorithms to incur Ω(logn)
wasted work.

More precisely, let invi,i+1 be event that the relaxed scheduler

returns the task with label i+1 before task with label i . First, we will
prove the following claim forMultiQueue being used as a relaxed

scheduler:

Claim 1. For every i > 1, Pr [invi,i+1] ≥ 1/8.

Proof. First we describe how incremental algorithms work us-

ingMultiQueues . TheMultiQueue maintains k sequential priority

queues, where k can be assumed to be a fixed parameter. As before,

each task is assigned a label according to the random permutation

of input tasks (lower label means higher priority). Initially, all tasks

are inserted inMultiQueue as follows: for each task, we select one

priority queue uniformly at random out, and insert the task into

it. To retrieve a task, the processor selects two priority queues uni-

formly at random and returns the task with highest priority (lowest

label), among the tasks on the top of selected priority queues.

Let ℓ(u) = i and ℓ(v) = i + 1. Additionally, let qu and qv be the

queues where u and v are inserted in initially. Also, let Tu,v be

event that u and v are the top tasks of queues at some point during

the run of our algorithm. We have that:

Pr [invi,i+1] = Pr [qu , qv ]

(
Pr [Tu,v ]Pr [invi,i+1 |Tu,v ,qu , qv ]

(2)

+ Pr [¬Tu,v ]Pr [invi,i+1 |¬Tu,v ,qu , qv ]

)
(3)

≥ (1 −
1

k
)Min

(
Pr [invi,i+1 |Tu,v ,qu , qv ], (4)

Pr [invi,i+1 |¬Tu,v ,qu , qv ]

)
. (5)

Observe that if ¬Tu,v and qu , qv , this means that tasks u and v
are never compared against each other. Consider two runs of our

algorithm until it returns either u orv , first with initially chosen qu
and qv and second with qu and qv swapped (these cases have equal

probability of occurring). Since vertices u and v have consecutive

labels and are never compared by the MultiQueue, this means that

all the comparison results are the same in both cases, hence the

scheduler has equal probability of returning u or v . (It is worth
mentioning here is thatTu,v only depends on values qu and qv and

does not depend on their ordering.)

This means that :

Pr [invi,i+1 |¬Tu,v ,qu , qv ] ≥ 1/2. (6)

Now we look at the case where u and v are top tasks of queues at

some step t . Let Xu be event that u is returned by MultiQueue and

similarly, letXv be event thatv is returned.We need to lower bound

the probability thatXv happens beforeXu . We can safely ignore all

the other tasks returned by scheduler and processed by algorithm

since it is independent of whether u or v is returned first. Let r be
the number of top tasks in queues which have labels larger than



i + 1. At step t , Pr [Xu ] = 3/k2 + 2r/k2 and Pr [Xv ] = 1/k2 + 2r/k2,
So we have that

Pr [Xu ] ≤ 3Pr [Xv ]. (7)

Observe that during the run of algorithm r will start to increase but
we will always have invariant that Pr [Xu ] ≤ 3Pr [Xv ]. This means

that probability that Xv happens before Xu is at least:

Pr [Xv ]

Pr [Xu ] + Pr [Xv ]
≥ 1/4. (8)

This gives us that:

Pr [invi,i+1 |Tu,v ,qu , qv ] ≥ 1/4. (9)

and consequently, since 1 − 1/k ≥ 1/2 we get that:

Pr [invi,i+1] ≥ (1 − 1/k)/4 ≥ 1/8. (10)

□

Theorem 5.1. For Delaunay triangulation and comparison sorting,
the expected number of extra steps is lower bounded by Ω(logn).

Proof. To establish the lower bound, we can assume that if

the scheduler returns vertex v , which depends on some other un-

processed vertex, we check if vertex u with label ℓ(v) − 1 is not

processed and we charge edge e = (u,v), if v depends on u. This
way, we get that pi,i+1 and Pr [invi,i+1] are not correlated, since if
we run algorithm to the point where vertex with label i or i + 1 is
returned, it will never check the dependency between them.

Wewill employ the following property of Delaunay triangulation

and BST -based comparison sorting: for any i > 0, pi,i+1 ≥ 1/i . This
property is easy to verify: in Delaunay triangulation there is at least

1/i probability that vertices with labels i and i + 1 are neighbours
in the Delaunay triangulation of vertices with labels 1, 2, ..., i, i + 1,
in BST based comparison sorting there is at least 1/i probability
that tasks with labels i and i + 1 have consecutive keys among keys

of tasks with labels 1, 2, ..., i, i + 1 and in both cases the task with

label i + 1 will depend on the task with label i(see [10]).
This, in combination with Claim 1 will give us the lower bound

on the number of extra steps, since if task with label i + 1 depends
on the task with label i and it is returned first by scheduler, this will
trigger at least one extra step, caused by not being able to process

task:

E[#extrasteps] ≥
n−1∑
i=1

pi,i+1Pr [invi,i+1] ≥ 1/8 logn. (11)

□

6 ANALYZING SSSP UNDER RELAXED
SCHEDULING

Preliminaries. Since the algorithm is different from the ones we

considered thus far, we re-introduce some notation. We assume we

are given a directed graph G = (V ,E) with positive edge weights

w(e) for each edge e ∈ E, and a source vertex s . For each vertex v ∈
V , let d(v) be the weight of a shortest path from s tov . Additionally,
let dmax = max{d(v) : v ∈ V } andwmin = min{w(e) : e ∈ E}.

We consider the sequential pseudocode from Algorithm3, which

uses a relaxed priority queue Qk to find shortest paths from s via a
procedure similar to the ∆-stepping algorithm [27].

In this algorithmQk .push(v,dist) inserts a vertexv with distance

dist in Qk , Qk .pop() removes and returns a vertex, distance pair

(v,dist), such that v is among the k smallest distance vertices in

Qk . We also assume that Qk supports a Qk .DecreaseKey(v,dist)
operation, which atomically decreases the distance of vertex v in

Qk to dist .

Data: Graph G = (V ,E), source vertex s .
Initially empty relaxed priority queue Qk .

Array dist[n] for tentative distances.
1 for each vertex v ∈ V do
2 dist[v] ← +∞

3 end
4 dist[s] ← 0

5 Qk .push(s, 0)

6 while !Qk .empty() do
7 (v, curDist) ← Qk .pop()

8 if curDist > dist[v] then
9 continue // curDist is outdated

10 end
11 for u : (v,u) ∈ E do
12 e ← (v,u)

13 if dist[u] > curDist +w(e) then
14 dist[u] ← curDist +w(e)

15 // We assume that we can check whether v is in

16 // Qk , this can be implemented via maintaining

17 // the corresponding flag for each vertex.

18 if u ∈ Qk then
19 Qk .DecreaseKey(u,dist[u])

20 end
21 else
22 Qk .Add(u,dist[u])

23 end
24 end
25 end
26 end
Algorithm 3: SSSP algorithm based on a relaxed priority queue.

Analysis. We will prove the following statement, which upper

bounds the extra work incurred by the relaxed scheduler:

Theorem 6.1. The number of Qk .pop() operations performed by
Algorithm 3 is O(k2dmax/wmin) + n.

Proof. Our analysis will follow the general pattern of∆-stepping
analysis.Wewill partition the vertex setV into buckets, based on dis-

tance: vertexv belongs to bucket Bi iff d(v) ∈ [iwmin , (i + 1)wmin ).

Let t = dmax/wmin be the total number of buckets we need (for

simplicity we assume that dmax/wmin is an integer).

Observe that because of the way we defined buckets, we have

the following property, which we will call the bucket property : for

any vertex v ∈ V , no shortest path from s to v contains vertices

which belong to the same bucket.

We say that Algorithm 3 processes vertex v at the correct dis-
tance if Qk .pop() returns (v,d(v)), this means that dist[v] = d(v)



at this point and we relax outgoing edges of v . (See Algorithm 3

for clarification.)

We fix i < t and look at what happens when Algorithm 3 pro-

cesses all vertices in the buckets B0,B1, ...,Bi at the correct distance.
Because of the bucket property, we get that d(u) = dist[u] for every
u ∈ Bi+1, and the vertices from bucket Bi+1 are either ready to be

processed at the correct distance, or are already processed at the

correct distance. To avoid the second case, we also assume that if

Qk .pop() returns (u,d(u)), where u ∈ Bi+1 and not all vertices in

the buckets B0,B1, ...,Bi are processed at the correct distance, then
this Qk .pop() operation still counts towards the total number of

Qk .pop() operations, but it does not actually remove the task and

does not perform edge relaxations, even though u is ready to be

processed at the correct distance. This assumption only increases

the total number of Qk .pop() operations, so to prove the claim it

suffices to derive an upper bound for this pessimistic case.

Once the algorithm processes the vertices in bucketsB0,B1, ...,Bi
at the correct distances, we know that the only vertices with ten-

tative distance less than (i + 2)wmin are the vertices in the bucket

Bi+1. (Note that this statement would not hold if we didn’t have the

DecreaseKey operation: if we insert multiple copies of vertices in

Qk with different distances, as in some versions of Dijkstra, there

might exist outdated copies of vertex u ∈ Bj , j < i , even though u
was already processed at the correct distance.) This means that, at

this point, the top |Bi+1 | vertices (vertices with the smallest distance

estimates) belong to Bi+1.
Next, we bound how many Qk .pop() operations are needed

to process the vertices in Bi+1, after all vertices in the buckets

B0,B1, ...,Bi are processed. If |Bi+1 | > k , using the rank property,

we have that the first (|Bi+1 | − k) Q .pop() operations process ver-
tices in Bi+1. If |Bi+1 | ≤ k , we know that it will take at most k2

Qk .pop() operations to process all vertices in Bi+1, since, because
by the fairness bound, the number ofQk .pop() operations to return
the top vertex (the one with the smallest tentative distance) is at

most k , and we showed that the top vertex belongs to Bi+1 until all
vertices in Bi+1 are processed. By combining these two cases, we

get that the number of Qk .pop() operations to process vertices in
Bi+1 at the correct distance is at most |Bi+1 | + k

2
.

Thus the number of Qk .pop() operations performed by Algo-

rithm 3 in total is at most:

t∑
i=0
(k2 + |Bi |) = n +O(k

2dmax/wmin), (12)

as claimed.

□

Discussion. A clear limitation is that the bound depends on the

maximum distance dmax, and on the minimum weightwmin. Hence,

this bound would be relevant only for low-diameter graphs with

bounded edge weights. We note however this case is relatively com-

mon: for instance, [16] considers weighted graph models of low

diameter, where weights are chosen in the interval [1, logn). These
assumptions appear to hold in for many publicly available weighted

graphs [26]. Further, our argument assumes a relaxed scheduler sup-

porting DecreaseKey operations. This operation can be supported

by schedulers such as the SprayList [5] or MultiQueues [4, 29]

where elements are hashed consistently into the priority queues.

7 EXPERIMENTS
We implemented the parallel SSSP Dijkstra’s algorithm described

in Section 6 using an instance of the MultiQueue relaxed prior-

ity scheduler [4, 29]. In the classic sequential algorithm nodes are

processed sequentially, while in this parallel version a node can

be processed several times due to out-of-order execution. In our

experiments, we are interested in the total number of tasks pro-

cessed by the concurrent variant, in order to examine the overhead

of relaxation in concurrent executions. In addition, we also mea-

sure execution times for increasing number of threads. Overhead is

measured as the average number of tasks executed in a concurrent

execution divided by the number of tasks executed in a sequential

execution using an exact scheduler.

Sample graphs. We use the following list of graphs in our exper-

iments:

• Random undirected graph with 1 million nodes and 10 mil-

lion edges, with uniform random weights between 0 and 100

(random);

• USA road network graph with physical distances as edge

lengths; ∼ 24 million nodes and ∼ 58 million edges (road)
[15];

• LiveJournal social network friendship graph; ∼ 5 million

nodes and ∼ 69 million edges, with uniform random weights

between 0 and 100 (social) [26].

Platforms. We evaluated the experiment on a server with 4 Intel

Xeon Gold 6150 (Skylake) sockets. Each socket has 18 2.70 GHz

cores, each of which multiplexes 2 hardware threads, for a total

of 144 hardware threads. In addition, we ran the experiment on a

Google Cloud Platform VM supporting to 96 hardware threads.

Experimental results. The experimental results are summarized

in Figure 1. On the left column, notice that, on both machines, the

overheads of relaxation are almost negligible: for the random graph

and the social network, the overheads are almost 1% at all thread

counts, what practically means the absence of extra work. (Recall

that the number of queues is always 2× the number of threads, so

the relaxation factor increases with the thread count.)

The road network incurs higher overheads (5% at 144 threads /

288 queues). This can be explained by the higher diameter of the

graph (6261, versus 16 for the LiveJournal and 6 for the random

graphs), and by the higher variance in edge costs for the road

network. In terms of speedup (right), our implementation scales

well for 1-2 sockets on our local server, after which NUMA effects

become prevalent. NUMA effects are less prevalent on the Google

Cloud machine, but the maximum speedup is also more limited

(< 7× instead of 10×). In Figure 2, we examine the relaxation

overhead (in terms of the amount of extra tasks executed) versus

the relaxation factor. While we cannot control the relaxation factor

exactly, we know that the average value of this factor is proportional

to the number of queues allocated, which is the number of threads

(fixed for each sub-plot) times the multiplier for the number of

queues (the x axis) [4]. We notice that these overheads are only

non-negligible for the road network graph. On the one hand, this

suggests that our worst-case analysis is not tight, but can also be

interpreted as showing that the overheads of relaxation do become

apparent on dense, high-diameter graphs such as road networks.



Figure 1: Overheads (left) and speedups (right) for parallel SSSP Dijkstra’s algorithm executed via a MultiQueue relaxed sched-
uler on random, road network, and social network graphs. The overhead is measured as the ratio between the number of tasks
executed via a relaxed scheduler versus an exact one.

8 CONCLUSION
We have provided the first efficiency bounds for parallel implemen-

tations of SSSP and Delaunay mesh triangulation under relaxed

schedulers. In a nutshell, our results show that, for some inputs and

under analytic assumptions, the overheads of parallelizing these

algorithms via relaxed schedulers can be negligible. Our findings

complement empirical results showing similar trends in the context

of high-performance relaxed schedulers [25, 28]. While our analysis

was specialized to these algorithms, we believe that our techniques

can be generalized to other iterative algorithms, which we leave as

future work.
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